Cho đường tròn (O),điểm A nằm bên ngoài đường tròn,kẻ tiếp tuyến AM,AN(M,N là các tiếp điểm)
a,CM: OA vuông góc với MN
b,Vẽ đường kính NOC;Chứng minh CM song song AO
c,Tính các cạnh của tam giác AMN biết OM=3cm;OA=5cm
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Vẽ đường kính NOC. Chứng minh rằng MC // AO
Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90 °
Suy ra: NM ⊥ MC
Mà OA ⊥ MN (chứng minh trên)
Suy ra: OA // MC
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm). Vẽ đường kính NOC. Chứng minh rằng AM//CN.
Cho đường tròn (O), đểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm) a) Chứng minh: OAMN b) Vẽ đường kính NOC. Chứng minh: MC // AO c) Tính chu vi AMN biết OM= 3cm và OA = 5cm
a) Xét (O) có
AM là tiếp tuyến có M là tiếp điểm(gt)
AN là tiếp tuyến có N là tiếp điểm(gt)
Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AM=AN(cmt)
nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OM=ON(cmt)
nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(đpcm)
b) Xét (O) có
ΔMNC nội tiếp đường tròn(C,M,N∈(O))
NC là đường kính
Do đó: ΔMNC vuông tại M(Định lí)
⇒MN⊥MC
Ta có: MN⊥MC(cmt)
MN⊥AO(cmt)
Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)
c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:
\(OA^2=OM^2+MA^2\)
\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)
hay \(AM=\sqrt{16}=4cm\)
mà AM=AN(cmt)
nên AN=4cm
Gọi H là giao điểm của MN và AO
mà MN⊥AO tại trung điểm của MN
nên H là trung điểm của MN và MH⊥AO tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:
\(MH\cdot AO=MO\cdot MA\)
\(\Leftrightarrow MH\cdot5=4\cdot3=12\)
hay MH=2,4cm
mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)
nên \(MN=2\cdot2.4=4.8cm\)
Chu vi tam giác AMN là:
\(C=AM+AN+MN=5+5+4.8=14.8cm\)
Cho (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là tiếp điểm ) . Gọi H là giao điểm của AO và MN.
a, C/m OA vuông góc MN tại H
b, vẽ đường kính MC. C/m NC // AO
c, Gọi D là giao điểm thứ hai của AC với (O), c/m AD.AC=AH.AO
d, Gọi I là trung điểm của CD, MN cắt OI kéo dài tại S. C/m SC là tiếp tuyến của (O)
Giups mình ý d với ạ
a: Xét (O) có
AM là tiếp tuyến
AN là tiếp tuyến
Do đó: AM=AN
hay A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(3)
b: Xét (O) có
ΔMNC nội tiếp
MC là đường kính
Do đó: ΔMNC vuông tại N
=>MN⊥NC(4)
Từ (3) và (4) suy ra OA//CN
c: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
Do đó:ΔMDC vuông tại D
Xét ΔMAC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(5\right)\)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(6\right)\)
Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm)
a) Chứng minh rằng \(OA\perp MN\)
b) Vẽ đường kính NOC. Chứng minh rằng MC // AO
c) Tính độ dài các cạnh của tam giác AMN biết OM = 3cm, OA = 5cm
a) ta có : AN = AM (tính chất tiếp tuyến)
\(\Rightarrow\) tam giác AMN cân tại A
OA là tia phân giác cũng là đường cao
\(\Rightarrow\) OA \(\perp\) MN (đpcm)
b) đặc H là giao điểm của MN và AO
ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)
mà CO = CN = R
\(\Rightarrow\) OH là đường trung bình của tam giác MNC
\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)
c) OM = ON = R \(\Rightarrow\) ON = 3 (cm)
ta có : ON2 + AN2 = AO2 (pytago) \(\Rightarrow\) AN2 = AO2 - ON2
= 52 - 32 = 25 - 9 = 16 \(\Rightarrow\) AN = \(\sqrt{16}=4\) (cm)
ta có : AO.HN = AN.NO (hệ thức lượng)
\(\Rightarrow\) 5HN = 4.3 = 12 \(\Rightarrow\) HN = \(\dfrac{12}{5}=2,4\) (cm)
ta có MN = 2HN = 2.2,4 = 4,8 (H là trung điểm MN)
vậy AM = AN = 4(cm) ; MN = 4,8(cm)
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Chứng minh rằng OA ⊥ MN
Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)
Vậy OA ⊥ MN.
cho đường tròn tâm o bán kính r , từ điểm a nằm ngoài đường tròn vẽ hai tiếp tuyến am , an với đường tròn . i là giao điểm mn và oa . vẽ đường kính mb của đường tròn , qua o kẻ dường thẳng vuông góc với ab tại h , cắt mn tại c , chứng minh bc là tiếp tuyến của đường tròn tâm o , bán kính r
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại I
Xét ΔOHA vuông tại H và ΔOIC vuông tại I có
\(\widehat{HOA}\) chung
Do đó: ΔOHA~ΔOIC
=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)
=>\(OH\cdot OC=OA\cdot OI\)
mà \(OA\cdot OI=OM^2=OB^2\)
nên \(OB^2=OH\cdot OC\)
=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
Xét ΔOBC và ΔOHB có
\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
\(\widehat{BOC}\) chung
Do đó: ΔOBC~ΔOHB
=>\(\widehat{OBC}=\widehat{OHB}\)
mà \(\widehat{OHB}=90^0\)
nên \(\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
Cho đường tròn tâm O.Điểm A nằm bên ngoài đường tròn.Kẻ 2 tiếp tuyến AM,AN với đường tròn(MN là các tiếp điểm)
a)CM OA vuông góc với MN
b)Kẻ đường kính NOC.cmr MC//AO
C)Tính độ dài các cạnh tam giác AMN biết OM=3;OA=5cm
a,theo t/c 2 tiếp tuyến cắt nhau thì \(MA=NA\Rightarrow\Delta AMN\) cân và \(OA\) la p/g cua goc MAN \(\Rightarrow AO\) là dg p/g đóng vai vai trò đg cao \(\Rightarrow AO\perp MN\)
b,tam giác CMN có CN là đg kính nên tam giác CMN là tam giác vuông nên goc CMO +goc OMN =90 mat khác góc OMN+góc AOM =90 (MN \(\perp\) OA)\(\Rightarrow\)góc CMO =goc AOM(cùng phụ góc OMN) ở vị trí so le trong nên MC song song voi AO
C,xet \(\Delta OMA\) có \(AM=\sqrt{OA^2-OM^2}=\sqrt{5^2-3^2}=4\Rightarrow AN=AM=4\)
va MH=\(\frac{MA.MO}{OA}=\frac{4.3}{5}=2.4\Rightarrow MN=2MH=4.8\)
mình làm có gì sai mong bạn bỏ qua
Cho đường tròn tâm O điểm A nằm ngoài đường tròn kẻ tiếp tuyến AM , AN đường tròn ( MN là tiếp điểm ) .
A , Chứng minh OA với MN .
B , Vẻ đường kính NOC ,Chướng minh rằng MR // AO
C , Tính độ dài các cạnh tam giác AMN biết OM = 3cm , 5cm .
Cho sửa lại đề tí ==* , câu b) là c/m MR // AO => MC // AO :>
a. Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN ( tính chất hai tiếp tuyến cắt nhau )
Suy ra AO là đường cao của tam giác AMN ( tính chất tam giác cân )
Vậy \(OA\perp MN\)
b. Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90o
Suy ra: \(NM\perp MC\)
Mà \(OA\perp MN\)(chứng minh trên)
Suy ra: OA // MC
c. Ta có: \(AN\perp NC\) (tính chất tiếp tuyến)
Áp dụng định lí Pitago vào tam giác vuông AON ta có :
AO2 = AN2 + ON2
Suy ra : AN2 = AO2 – ON2 = 52 – 32 = 16
AN = 4 (cm)
Suy ra: AM = AN = 4 (cm)
Gọi H là giao điểm của AO và MN
Ta có: \(MH=NH=\frac{MN}{2}\) (tính chất tam giác cân)
Tam giác AON vuông tại N có \(NH\perp AO\). Theo hệ thức lượng trong tam giác vuông, ta có:
OA . NH = AN . ON => \(NH=\frac{\left(AN.ON\right)}{AO}=\frac{\left(4.3\right)}{5}=2,4\)
MN = 2.NH = 2.2,4 = 4,8 (cm)
Vậy .....................
Cho đường tròn tâm O từ điểm A nằm ngoài đường tròn vẽ 2 tiếp tuyến tới đường tròn AM,AN(MN là 2 tiếp điểm a) CM 4 điểm A,M,O,N thuộc cùng 1 đường tròn b) vẽ đường kính MOB.tia phân giác góc NOB cắt AN tại i CM IB là tiếp tuyến đường tròn O c) CM AO là đường trung trực của MN gọi K là giao điểm của AO và MN CM k là trng điểm của MN.
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=90^0+90^0=180^0\)
=>OMAN là tứ giác nội tiếp
=>O,M,A,N cùng thuộc một đường tròn
b: ΔOBN cân tại O
mà OI là đường phân giác
nên OI\(\perp\)BN và OI là đường trung trực của BN
Xét ΔOBI và ΔONI có
OB=ON
\(\widehat{BOI}=\widehat{NOI}\)
OI chung
Do đó: ΔOBI=ΔONI
=>\(\widehat{OBI}=\widehat{ONI}=90^0\)
=>IB là tiếp tuyến của (O)
c: Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
d: AO là đường trung trực của MN
=>AO cắt MN tại trung điểm của MN
=>K là trung điểm của MN