Cho (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là tiếp điểm ) . Gọi H là giao điểm của AO và MN.
a, C/m OA vuông góc MN tại H
b, vẽ đường kính MC. C/m NC // AO
c, Gọi D là giao điểm thứ hai của AC với (O), c/m AD.AC=AH.AO
d, Gọi I là trung điểm của CD, MN cắt OI kéo dài tại S. C/m SC là tiếp tuyến của (O)
Giups mình ý d với ạ
a: Xét (O) có
AM là tiếp tuyến
AN là tiếp tuyến
Do đó: AM=AN
hay A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(3)
b: Xét (O) có
ΔMNC nội tiếp
MC là đường kính
Do đó: ΔMNC vuông tại N
=>MN⊥NC(4)
Từ (3) và (4) suy ra OA//CN
c: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
Do đó:ΔMDC vuông tại D
Xét ΔMAC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(5\right)\)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(6\right)\)
Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)