Cho đường tròn tâm O từ điểm A nằm ngoài đường tròn vẽ 2 tiếp tuyến tới đường tròn AM,AN(MN là 2 tiếp điểm a) CM 4 điểm A,M,O,N thuộc cùng 1 đường tròn b) vẽ đường kính MOB.tia phân giác góc NOB cắt AN tại i CM IB là tiếp tuyến đường tròn O c) CM AO là đường trung trực của MN gọi K là giao điểm của AO và MN CM k là trng điểm của MN.
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=90^0+90^0=180^0\)
=>OMAN là tứ giác nội tiếp
=>O,M,A,N cùng thuộc một đường tròn
b: ΔOBN cân tại O
mà OI là đường phân giác
nên OI\(\perp\)BN và OI là đường trung trực của BN
Xét ΔOBI và ΔONI có
OB=ON
\(\widehat{BOI}=\widehat{NOI}\)
OI chung
Do đó: ΔOBI=ΔONI
=>\(\widehat{OBI}=\widehat{ONI}=90^0\)
=>IB là tiếp tuyến của (O)
c: Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
d: AO là đường trung trực của MN
=>AO cắt MN tại trung điểm của MN
=>K là trung điểm của MN