Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 17:31

\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

Trịnh Nam Khánh
7 tháng 8 2021 lúc 17:32

áp dụng AM GM ta có a^3/b+ab>=2a^2

chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)

mà ta có a^2+b^2+c^2>=(ab+bc+ca)

=>a^3/b+b^3/c+c^3/a>= ab+bc+ca

"=" xảy ra khi a=b=c

Dịu Kun
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:46

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

Yeutoanhoc
28 tháng 6 2021 lúc 16:53

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

Nguy?n Qu?c ??c Th?ng
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
1 tháng 2 2021 lúc 10:10

Ta có : \(a+b+c+d=0\)

\(\Leftrightarrow a+b=-c-d\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c-d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3-d^3+3cd.\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3cd.\left(c+d\right)-3ab.\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3.cd.\left(a+b\right)+3ab.\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3.\left(c+d\right)\left(cd+ab\right)\)

Ngô Đức Kiên
1 tháng 2 2021 lúc 10:18

Ta có : a+b+c+d=0

⇔a+b=−c−d

⇔(a+b)3=(−c−d)3

⇔a3+b3+3ab.(a+b)=−c3−d3+3cd.(c+d)

⇔a3+b3+c3+d3=3cd.(c+d)−3ab.(a+b)

⇔a3+b3+c3+d3=3.cd.(a+b)+3ab.(c+d)

⇔a3+b3+c3+d3=3.(c+d)(cd+ab)

Edogawa Conan
Xem chi tiết
Hồng Quang
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

TM Vô Danh
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Akai Haruma
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

Cúc Suri
Xem chi tiết
Trần Việt Linh
15 tháng 12 2016 lúc 20:09

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

SuSu
Xem chi tiết
hgf
28 tháng 10 2018 lúc 8:58

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

Thương Đoàn
Xem chi tiết
nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3

nguyenduckhai /lop85
29 tháng 11 2021 lúc 13:09

nè ban

^($_DUY_$)^
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 21:32

\(a^3+b^3+c^3=3bac\)

=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

=>\(\left[\left(a+b\right)^3+c^3\right]-3ba\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(a^2+b^2+c^2-ab-ac-bc=0\)

=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

Toru
11 tháng 12 2023 lúc 21:35

\(a^3+b^3+c^3=3abc\\\Rightarrow a^3+b^3+c^3-3abc=0\\\Rightarrow(a+b)^3+c^3-3ab(a+b)-3abc=0\\\Rightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Rightarrow(a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Rightarrow(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab)=0\\\Rightarrow(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\\\Rightarrow a^2+b^2+c^2-ab-bc-ca=0(vì.a+b+c\ne0)\\\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\\Rightarrow(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\\\Rightarrow(a-b)^2+(b-c)^2+(c-a)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)

Vậy: ...

\(---\)

Các HĐT được sử dụng trong bài:

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

$\text{#}Toru$

^($_DUY_$)^
Xem chi tiết
Toru
11 tháng 12 2023 lúc 21:38

loading...

Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 21:39

loading...

 

Nguyễn Thành Hiệp
Xem chi tiết
HOANG THI THANH THU
29 tháng 11 2015 lúc 15:28

sao ma kho du day ban..minh bo tay bo chan lun oy oy oy

xin loi minh khong the giup ban duoc

cao nguyễn thu uyên
29 tháng 11 2015 lúc 15:31

mk chưa hok tới lớp 8