Cho ab=1. Tìm GTNN của:
\(P=\dfrac{a^2}{b}+\dfrac{b^2}{a}+2\left(a^2+b^2\right)\)
Cho a, b, c > 0. Tìm GTNN của: \(P=\dfrac{a\left(1+b^2\right)}{bc}+\dfrac{b\left(1+c^2\right)}{ca}+\dfrac{c\left(1+a^2\right)}{ab}\)
áp dụng bất đẳng thức: 1+b2>=2b. tương tự.....
ad bđt cauchy: a/b+b/c+c/a>=3∛a/b.b/c.c/a=3
P>=\(\dfrac{2ab}{bc}\)+\(\dfrac{2bc}{ca}\)+\(\dfrac{2ca}{ab}\) =2(\(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+ \(\dfrac{c}{a}\))>=2.3=6
Pmin khi a=b=c=1
Áp dụng bđt : \(1+b^2>=2b\)
bđt cauchy : \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>3\sqrt[3]{}\) a\b . b\c . c\a = 3
Cho 3 số dương a,b,c. Tìm GTNN của:
\(P=\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\right)\)
\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\right)\)
\(P\ge\left(a+b+c\right)^2\left(\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{\dfrac{1}{3}\left(a+b+c\right)^2}\right)=30\)
\(P_{min}=30\) khi \(a=b=c\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)
cho a,b,c>0. tìm GTNN của \(P=\dfrac{a^2}{c\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
Tử, mẫu không đồng bậc
Đề sai hoặc thiếu điều kiện
tử cộng thêm c^2 bớts c^2
tách tử theo mẫu
cô si mẫu
cho a,b,c > 0. Tìm GTNN của
\(P=\dfrac{a^2}{\left(a+b\right)^2}+\dfrac{b^2}{\left(b+c\right)^2}+\dfrac{c}{4a}\)
Đặt \(\dfrac{b}{a}=x;\dfrac{c}{b}=y\).
Ta có: \(P=\dfrac{1}{\left(\dfrac{a+b}{a}\right)^2}+\dfrac{1}{\left(\dfrac{b+c}{b}\right)^2}+\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{1}{4}\)
\(P=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}+\dfrac{xy}{4}\).
Ta có bđt quen thuộc: \(\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}\ge\dfrac{1}{xy+1}\) (bạn xem cm ở đây).
Do đó \(P\ge\dfrac{1}{xy+1}+\dfrac{xy+1}{4}-\dfrac{1}{4}\ge1-\dfrac{1}{4}=\dfrac{3}{4}\).
Đẳng thức xảy ra khi x = y = 1 tức a = b = c.
Vậy...
Cho a,b > 0 và a2+b2=1. Tìm GTNN của biểu thức sau :
P = \(\left(2+a\right)\left(1+\dfrac{1}{b}\right)+\left(2+b\right)\left(1+\dfrac{1}{a}\right)\)
\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)
Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)
\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)
Cho x,y,z≠0. Tìm GTNN của:
\(T=\dfrac{a^2}{a^2+\left(b+c\right)^2}+\dfrac{b^2}{b^2+\left(a+c\right)^2}+\dfrac{c^2}{c^2+\left(b+c\right)^2}\)
Biểu thức này chỉ có max, không có min
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).
Áp dụng bđt Schwars ta có:
\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).
Đẳng thức xảy ra khi a = b = c = 1.