Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
oooloo

cho a,b,c > 0. Tìm GTNN của 

\(P=\dfrac{a^2}{\left(a+b\right)^2}+\dfrac{b^2}{\left(b+c\right)^2}+\dfrac{c}{4a}\)

Trần Minh Hoàng
11 tháng 1 2021 lúc 23:09

Đặt \(\dfrac{b}{a}=x;\dfrac{c}{b}=y\).

Ta có: \(P=\dfrac{1}{\left(\dfrac{a+b}{a}\right)^2}+\dfrac{1}{\left(\dfrac{b+c}{b}\right)^2}+\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{1}{4}\)

\(P=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}+\dfrac{xy}{4}\).

Ta có bđt quen thuộc: \(\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{\left(y+1\right)^2}\ge\dfrac{1}{xy+1}\) (bạn xem cm ở đây).

Do đó \(P\ge\dfrac{1}{xy+1}+\dfrac{xy+1}{4}-\dfrac{1}{4}\ge1-\dfrac{1}{4}=\dfrac{3}{4}\).

Đẳng thức xảy ra khi x = y = 1 tức a = b = c. 

Vậy...


Các câu hỏi tương tự
dia fic
Xem chi tiết
Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Anh Phạm Xuân
Xem chi tiết
dia fic
Xem chi tiết
Gia Hân Ngô
Xem chi tiết
Học tốt
Xem chi tiết