Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dia fic

cho a,b,c dương thỏa mãn \(\left(3a+2b\right)\left(3a+2c\right)=16bc\). tìm GTNN của \(P=\dfrac{\left(a+b+c\right)^2}{a\left(b+c\right)}\)

Trần Minh Hoàng
8 tháng 1 2021 lúc 10:45

\(\left(3a+2b\right)\left(3a+2c\right)=16bc\Leftrightarrow\dfrac{3a+2b}{b}.\dfrac{3a+2c}{c}=16\Leftrightarrow\left(3x+2\right)\left(3y+2\right)=16\) với \(x=\dfrac{a}{b};y=\dfrac{a}{c}\).

Áp dụng bất đẳng thức AM - GM: \(16=\left(3x+2\right)\left(3y+2\right)\le\dfrac{\left(3x+3y+4\right)^2}{4}\Leftrightarrow x+y\le\dfrac{4}{3}\);

\(xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{4}{9}\).

Ta có: \(P=\dfrac{a^2+2a\left(b+c\right)+\left(b+c\right)^2}{a\left(b+c\right)}=\dfrac{a}{b+c}+\dfrac{b+c}{a}+2=\dfrac{xy}{x+y}+\dfrac{x+y}{xy}=\left(\dfrac{xy}{x+y}+\dfrac{x+y}{9xy}\right)+\dfrac{8\left(x+y\right)}{9xy}\ge2\sqrt{\dfrac{xy}{x+y}.\dfrac{x+y}{9xy}}+\dfrac{8\left(x+y\right)}{\dfrac{9\left(x+y\right)^2}{4}}=\dfrac{2}{3}+\dfrac{32}{9\left(x+y\right)}\ge\dfrac{2}{3}+\dfrac{32}{12}=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi \(3a=2b=2c>0\).

Vậy...


Các câu hỏi tương tự
Nhã Doanh
Xem chi tiết
Big City Boy
Xem chi tiết
missing you =
Xem chi tiết
dia fic
Xem chi tiết
Nue nguyen
Xem chi tiết
Yu gi Oh Magic
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Vampire
Xem chi tiết