Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 15:26

Rút gọn phân thức

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 9:27

Phép chia các phân thức đại số

Λşαşşʝŋ GΩD
Xem chi tiết
hưng phúc
21 tháng 11 2021 lúc 22:01

1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)

 

hưng phúc
21 tháng 11 2021 lúc 22:11

Đợi anh chút

Nguyễn Việt Lâm
21 tháng 11 2021 lúc 22:20

\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)

Zi Heo
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 15:20

c: \(=\dfrac{\left(x+2\right)^2}{\left(x-5y\right)^2}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+5y\right)}{\left(x-5y\right)\left(x-2\right)}\)

quynh nhu nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2022 lúc 23:07

\(=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\cdot\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x-y}{x^2+y^2}=\dfrac{x\left(x-y\right)}{\left(x^2+y^2\right)^2}\)

Vũ Thị Thu Hằng
Xem chi tiết
Kien Nguyen
18 tháng 12 2017 lúc 14:01

Phân thức đại sốPhân thức đại số

Kathy Nguyễn
Xem chi tiết
Quang Duy
20 tháng 8 2017 lúc 19:42

a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)

\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)

\(=\dfrac{y\left(x+2y\right)}{xy}\)

Nguyễn Nam
24 tháng 11 2017 lúc 12:56

b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)

\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)

\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{x-y}\)

\(=\dfrac{\left(x-y\right)^2}{x-y}\)

\(=x-y\)

nguyễn thái hồng duyên
Xem chi tiết
Thành Trương
1 tháng 7 2018 lúc 9:42

Phân thức đại số

Thành Trương
1 tháng 7 2018 lúc 9:48

Phân thức đại số

Nguyễn Ngọc Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2022 lúc 19:07

\(=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)

\(=\dfrac{y\left(x+y\right)^2}{\left(x+y\right)\left(2x-y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)

\(=\dfrac{xy+y^2}{2x-y}\)