tìm x biết:C=\(\left(3\right)^{x+1}+\left(3\right)^{x+2}+...+\left(3\right)^{x+100}=120\)
tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
Chứng minh: \(P=\left(3^{x+1}+3^{x+2}+...=3^{x+100}\right)⋮120\left(x\in N\right)\)
biểu thức trong ngoặc chia hết cho 3 (hiển nhiên)
ta có P = 3x (3 + 32 + 33 +...+ 3100)
=3x [3(1+3) + 33(1+3) + 35(1+3) + ... + 399(1+3)]
=4.3x(3 + 33 + 35 + ... + 399)
=4.3x [3(1+9) + 35(1+9) + 37(1+9) +... + 397(1+9)]
=40.3x(3 + 35 + 37 + ... + 397) ⋮ 40
mà [3;40] = 120 ⇒ P⋮120 (ĐPCM)
2. tìm x
a) \(\left(x-1\right)^3=8\)
b) \(7^{2x-6}=49\)
c) \(\left(2x-14\right)^7=128\)
d) \(x^4.x^5=5^3.5^6\)
e) \(\left[3.\left(x+2\right):7\right].4=120\)
a) \(\left(x-1\right)^3=8=2^3\)
\(x-1=2\)
\(x=2+1=3\)
b) \(7^{2x-6}=49=7^2\)
\(2x-6=2\)
\(2x=6+2=8\)
\(x=8:2=4\)
c) \(\left(2x-14\right)^7=128=2^7\)
\(2x-14=2\)
\(2x=14+2=16\)
\(x=16:2=8\)
d) \(x^4\cdot x^5=5^3\cdot5^6=5^4\cdot5^5\)
\(x=5\)
e) \(3\cdot\left(x+2\right):7\cdot4=120\)
\(x+2=120:3\cdot7:4\)
\(x+2=70\)
\(x=70-2=68\)
Lời giải:
a. $(x-1)^3=8=2^3$
$\Rightarrow x-1=2$
$\Rightarrow x=3$
b. $7^{2x-6}=49=7^2$
$\Rightarrow 2x-6=2$
$\Rightarrow 2x=8$
$\Rightarrow x=4$
c. $(2x-14)^7=128=2^7$
$\Rightarrow 2x-14=2$
$\Rightarrow 2x=16$
$\Rightarrow x=18$
d.
$x^4.x^5=5^3.5^6$
$x^9=5^9$
$\Rightarrow x=5$
e.
$3(x+2):7=120:4=30$
$3(x+2)=30.7=210$
$x+2=210:3=70$
$x=70-2=68$
tìm x \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+...+\left(x+99\right)+\left(x+100\right)=5750\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
Chứng minh: \(P=\left(3^{x+1}+3^{x+2}+...=3^{x+100}\right)⋮120\left(x\in N\right)\)
P=(3x+1)+(3x+2)+(3x+3)+...+(3x+100)=3x*3+3x*32+3x*33+...+3x*3100=3x*(3+32+33+34+...+3100)
P=3x[(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)]
P=3x[3(1+3+32+33)+35(1+3+32+33)+...+397(1+3+32+33)]
Vì 1+3+32+33=120 nên trong [ ] chia hết cho 120 => P chia hết cho 120 (vì 1 thừa số của tích chia hết cho 120 thì tích đó chia hết cho 120)
=>đpcm
Tìm x
a) \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+.....+\left(x-100\right)=101\)
b) \(x+2x+3x+....+100x=1000\)
c) \(x+1+2\left(x+2\right)+3\left(x+3\right)+...+100\left(x+100\right)=101^2\)
d) \(\frac{1+x}{1}+\frac{1+x}{2}+\frac{1+x}{3}+...+\frac{1+x}{30}=0\)
e) \(\left(1+\frac{x}{1}\right)\left(2-\frac{x}{2}\right)\left(3-\frac{x}{3}\right)=0\)
BẠN NÀO BIẾT PHẦN NÀO THÌ GIÚP MIK NHÉ!
Thank!!
a) (x-1)+(x-2)+(x-3)+...+(-100)=101
(x+x+x+...+x)-(1+2+3+...+100)=101
=> 100x-5050=101
100x=101+5050
100x=5151
x=5151:100
x=5151/100
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
Tìm x biết:\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+100\right|=605x\)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)(1)
Vì \(VT>0\forall x\)
\(\Rightarrow VP>0\Leftrightarrow605x>0\Leftrightarrow x>0\)
Khi đó \(\left(1\right)\Leftrightarrow x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow100x+5050=605x\)
\(\Leftrightarrow505x=5050\)
\(\Leftrightarrow x=10\)( thỏa mãn )
Vậy....
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
a) Quy luật là gì ??
b)
Đặt
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)
Suy ra , phương trình trở thành :
213 -x =13
<=> x=200