tim nghiem nguyen duong cua phuong trinh \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\)
tim nghiem nguyen duong cua phuong trinh x+y+z=xyz
tim nghiem nguyen duong cua phuong trinh xy^2+2xy+x = 32y
biet rang phuong trinh (x-3a+1)(3x+2a-5)=0 (a la tham so nguyen duong ) co mot nghiem x=1 . nghiem con lai cua phuong trinh la x=....
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
1) Tong cac nghiem cua phuong trinh \(\dfrac{x-1}{x+2}-\dfrac{3x-5}{x-2}=\dfrac{2x^2+3}{4-x^2}\) la:
A. \(\dfrac{15}{4}\) B. \(\dfrac{-15}{4}\) C. 5 D. -5
- Thay từng giá trị vào, ta thấy A. \(\dfrac{15}{4}\) thỏa mãn.
tim nghiem nguyen cua phuong trinh
(y+1)^4+y^4=(x+1)^2+x^2
1) Cho phuong trinh: \(\dfrac{1}{2}\)cos4x + \(\dfrac{4tanx}{1+tan^2x}\) = m. De phuong trinh vo nghiem, cac gia tri cua tham so m phai thoa man dieu kien
ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
\(\dfrac{1}{2}cos4x+\dfrac{4sinx}{cosx}.cos^2x=m\)
\(\Rightarrow\dfrac{1}{2}cos4x+2sin2x=m\)
\(\Rightarrow\dfrac{1}{2}\left(1-2sin^22x\right)+2sin2x=m\)
\(\Rightarrow-sin^22x+2sin2x+\dfrac{1}{2}=m\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow-t^2+2t+\dfrac{1}{2}=m\)
Xét hàm \(f\left(t\right)=-t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{5}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\) \(\Rightarrow-\dfrac{5}{2}\le f\left(t\right)\le\dfrac{3}{2}\)
\(\Rightarrow\) Phương trình đã cho vô nghiệm khi \(\left[{}\begin{matrix}m< -\dfrac{5}{2}\\m>\dfrac{3}{2}\end{matrix}\right.\)
1) Nghiem cua phuong trinh cot ( 2x- 10o ) = tan ( x - \(\dfrac{\pi}{4}\)) la:
Đề bài tào lao thật sự
Vừa độ vừa radian trong 1 phương trình là không chính xác. Đã độ thì độ hết, đã radian thì radian hết
a,Tim m de phuong trinh sau co nghiem :
4-m=\(\dfrac{2}{x+1}\)
b,Tim m de phuong trinh tren co nghiem
\(4-m=\dfrac{2}{x+1}\)
Đkxđ : x +1 ≠ 0 ⇔x ≠ -1
\(\forall\) x≠-1; \(\dfrac{2}{x+1}\ne0\)
để pt có nghiệm thì 4 - m ≠ 0 ⇔ m ≠ 4
vậy m ≠ 4 thì pt có nghiệm
(a)<=>(b)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\left(4-m\right)\left(x+1\right)=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\ne4\\x=\dfrac{2}{4-m}-1=\dfrac{2-\left(4-m\right)}{4-m}=\dfrac{m-2}{4-m}\end{matrix}\right.\)
\(x\ne-1\Leftrightarrow\dfrac{m-2}{4-m}\ne-1\Leftrightarrow m-2\ne m-4\Leftrightarrow-2\ne-4\forall m\)
ket luan : m khac 4
tim nghiem nguyen duong cua phuong trinh \(x^2+\left(x+y\right)^2=\left(x+9\right)^2\)
Tuy đã 5 năm rồi nhưng tôi vẵn làm vậy :)
cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương
\( x^2+(x+y)^2=(x+9)^2\)
\(<=>x^2+x^2+2xy+y^2=x^2+18x+81\)
\(<=>(x+y)^2=18x+81\)
Ta có:\((x+y)^2-x^2=(x+y-x)(x+y+x)=y(2x+y)>0\)
\(=>(x+y)^2>x^2\)
\(=>18x+81>x^2\)
\(=>x^2+18x+81>2x^2>x^2\) (1)
Lại có:\(18x+81=(x^2+18x+81)-x^2=(x+9)^2-x^2<(x+9)^2\)(2)
Từ (1) và (2)
\(=>x^2<18x+81=(x+y)^2<(x+9)^2\)
\(=>18x+81=(x+1)^2,(x+2)^2,...,(x+8)^2\)
Chịu khó giải ra nha bn