CMR: \(\sqrt{a+b}+\sqrt{a-b}\le2\sqrt{a}\left(a>b>0\right)\)
CMR với a>c>0 và b>c>0, ta có
\(\sqrt{\left(a+c\right)\left(b+c\right)}+ \sqrt{\left(a-c\right)\left(b-c\right)}\le2\sqrt{ab}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
Cho a,b,c>0 .Cmr:
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Cho \(a,b>0:a+b\le2\).Tìm max: P=\(\sqrt{a\left(b+3\right)}+\sqrt{b\left(a+3\right)}\)
\(P=\dfrac{1}{2}\sqrt{4a\left(b+3\right)}+\dfrac{1}{2}\sqrt{4b\left(a+3\right)}\)
\(P\le\dfrac{1}{4}\left(4a+b+3\right)+\dfrac{1}{4}\left(4b+a+3\right)\)
\(P\le\dfrac{1}{4}\left(5a+5b+6\right)\le\dfrac{1}{4}\left(5.2+6\right)=4\)
\(P_{max}=4\) khi \(a=b=1\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca\ge3\end{matrix}\right.\)
cmr \(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\le2\left(a^2+b^2+c^2\right)\)
Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Lợi dụng BĐT Cauchy-Schwarz tao cso:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)
Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:
\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)
Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)
Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\le\sqrt{9}=3\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)
\(=4\left(a^2+b^2+c^2\right)=VP^2\)
Xảy ra khi \(a=b=c=1\)
Cho a;b;c > 0, ab + bc + ca = 1. CMR:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a^2+1}=\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\le\frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\sqrt{b^2+1}\le\frac{2b+c+a}{2};\sqrt{c^2+1}\le\frac{2c+a+b}{2}\)
Cộng theo vế 2 BĐT trên thu đc ĐPCM
Cho a, b > 0 và \(a+b\le2\) .
Tìm MAX P= \(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
Theo bất đẳng thức Bunhiacopxki, ta có :
\(P\le\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{b+1}\right)^2+\left(\sqrt{a+1}\right)^2\right]}\)
\(=\sqrt{\left(a+b\right)\left(a+b+2\right)}\)
\(\Rightarrow P\le\sqrt{2\left(2+2\right)}=2\sqrt{2}\)
Vậy : GTLN của P là \(2\sqrt{2}\). Dấu đẳng thức xảy ra khi và chỉ khi \(a=b=1\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Ta có:
\(VT^3=\left(\sqrt[3]{\sqrt{a}.\sqrt{a}.\left(a^2+7bc\right)}+\sqrt[3]{\sqrt{b}.\sqrt{b}.\left(b^2+7ca\right)}+\sqrt[3]{\sqrt{c}.\sqrt{c}.\left(c^2+7ab\right)}\right)^3\)
\(\le\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\left(a^2+b^2+c^2+7ab+7bc+7ca\right)\)
\(\le3\left(a+b+c\right)\left[\left(a+b+c\right)^2+\frac{5}{3}\left(a+b+c\right)^2\right]\)
\(=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\le2\left(a+b+c\right)\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Lời giải:
Áp dụng BĐT Holder:
\((\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq (a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)(1+1+1)\)
\(\Leftrightarrow (\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq 3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\)
Ta cần chứng minh:
\(3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^3\)
\(\Leftrightarrow 3(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^2(*)\)
Thật vậy:
Theo hệ quả của BĐT AM-GM thì \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\)
Do đó:
\(3(a^2+7bc+b^2+7ac+c^2+7ab)=3[(a+b+c)^2+5(ab+bc+ac)]\)
\(\leq 3[(a+b+c)^2+\frac{5}{3}(a+b+c)^2]=8(a+b+c)^2\)
\((*)\) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Cho \(a,b\) >0 và \(a+b\le2\) . Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt[]{a\left(b+1\right)}+\sqrt[]{b\left(a+1\right)}\)