Giải pt: 2x +\(\sqrt{x+\sqrt{x-\dfrac{1}{4}}}=2\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải pt
a.\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{X+\dfrac{1}{4}}}=4\)
b.\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Hắc Hường Mashiro Shiina Nguyễn Thanh Hằng Hiếu Cao Huy Phùng Khánh Linh Mến Vũ Hung nguyen Aki Tsuki Thiên Chỉ Hạc Trần Quốc Lộc trả lời giùm mình với
giải pt :
a,\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b,\(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
c,\(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
d.
ĐKXĐ: \(x>1\)
\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)
\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)
\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)
\(\Leftrightarrow1-\dfrac{1}{ab}=0\)
\(\Leftrightarrow ab=1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow x^3-1=1\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
giải pt :
a,\(\sqrt[3]{\dfrac{2x}{x+1}}\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
b,\(\sqrt[5]{\dfrac{16x}{x-1}}\sqrt[5]{\dfrac{x-1}{16xx}}=\dfrac{5}{2}\)
a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)
⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)
Phương trình vô nghiệm
b, x = \(\dfrac{8}{125}\)
Câu 1: Gải pt: 8x2 + \(\sqrt{\dfrac{1}{x}}=\dfrac{5}{2}\)
Câu 2:Giải pt: \(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\)
Câu 3: Tìm m để pt sau có nghiệm:
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
Giải hệ PT:\(\left\{{}\begin{matrix}\dfrac{4}{\sqrt[]{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-x-y}{x+y}=1\end{matrix}\right.\)
\(\left(x\ne-y;x>\dfrac{y}{2}\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7-\left(x+y\right)}{x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-y}}-\dfrac{21}{x+y}=\dfrac{1}{2}\\\dfrac{3}{\sqrt{2x-y}}+\dfrac{7}{x+y}=2\end{matrix}\right.\)
\(đặt:\dfrac{1}{\sqrt{2x-y}}=a>0;\dfrac{1}{x+y}=b\)
\(\Rightarrow\left\{{}\begin{matrix}4a-21b=\dfrac{1}{2}\\3a+7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\left(tm\right)\\b=\dfrac{1}{14}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-y}}=\dfrac{1}{2}\\\dfrac{1}{x+y}=\dfrac{1}{14}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)(thỏa)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
Giải pt và bpt sau:
a)\(\sqrt{x-2\sqrt{x-1}}\)=\(\sqrt{2}\)
b)\(\dfrac{4}{3}\sqrt{16\left(2-2x\right)^3}>24\)
a,ĐK: x\(\ge\)1
⇔\(\sqrt{x-1-2\sqrt{x-1}+1}\)=\(\sqrt{2}\)
⇔\(\sqrt{\left(\sqrt{x-1}-1\right)^2}\)=\(\sqrt{2}\)
⇔\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{2}\)
TH1:\(\sqrt{x-1}\)-1≥0⇒\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{x-1}\)-1 bn tự giải ra nha
TH2:\(\sqrt{x-1}\)-1<0⇒\(\left|\sqrt{x-1}-1\right|\)=1-\(\sqrt{x-1}\) bn tự lm nha