Tìm x :
9 . 27 ≤ \( (\dfrac{1}{3})^2 \) ≤ 27 . 243
a)\(3^{-1}\).\(4^x\)=\(\dfrac{5}{3}.2^7\)
b) \(9^{-x}\).\(27^x\)=243
a: =>4^x=640
=>\(x\in\varnothing\)
b: =>\(3^{-2x}\cdot3^{3x}=243\)
=>3^x=243
=>x=5
Tìm \(x,y\in N\):
a) 32x+1 . 7y = 9 . 21x
b) \(\dfrac{27^x}{3^{2x-y}}=243\) và \(\dfrac{25^x}{5^{x+y}}=125\)
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)+\(\dfrac{1}{720}\)
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\\ \Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\\ \Rightarrow3A-A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}-\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{27}-\dfrac{1}{81}-\dfrac{1}{243}-\dfrac{1}{729}\\ \Rightarrow2A=1-\dfrac{1}{729}\\ \Rightarrow2A=\dfrac{728}{729}\\ \Rightarrow A=\dfrac{364}{729}\)
Câu 3. (2 điểm) Tính nhanh tổng sau
S = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) +\(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)+ \(\dfrac{1}{729}\)
S= 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 x ( 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 )
S = 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 - 1 - 1/9 -1/27 - 1/81 - 1/243 - 1/729
S = 3 - 1/729
S= 142/729
1+\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)+\(\dfrac{1}{729}\)=?
Đặt A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
Úi
2A = 3 - \(\dfrac{1}{729}=\dfrac{2186}{729}\)
A = \(\dfrac{2186}{729}:2=\dfrac{1093}{729}\)
Tìm x biết:
a) x\(^3\)=343
b) (x-2.5)\(^4\)=(x-2.5)\(^2\)
c) \(\dfrac{x^8}{243}\)=27
`a)x^3=343=7^3`
`=>x=7`
Vậy `x=7`
`b)(x-2,5)^4=(x-2,5)^2`
`=>(x-2,5)^2[(x-2,5)^2-1]=0`
`+)(x-2,5)^2=0<=>x=2,5`
`+)(x-2,5)^2=1`
`TH1:x-2,5=1<=>x=3,5`
`th2:x-2,5=-1<=>x=1,5`
Vậy `x=0` hoặc `x=1,5` hoặc `x=3,5
`c)x^8/243=27`
`=>x^8=27.243`
`=>x^8=3^3*3^5=3^8`
`=>x=+-3`
Giải:
a) \(x^3=343\)
\(\Rightarrow x^3=7^3\)
\(\Rightarrow x=7\)
b) \(\left(x-2,5\right)^4=\left(x-2,5\right)^2\)
Vì có cùng cơ số nhưng lại khác mũ thì \(\left(x-2,5\right)\in\left\{0;1\right\}\)
TH1:
\(\Rightarrow x-2,5=0\)
\(\Rightarrow x=2,5\)
TH2:
\(\Rightarrow\left[{}\begin{matrix}x-2,5=1\\x-2,5=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3,5\\x=1,5\end{matrix}\right.\)
c) \(\dfrac{x^8}{243}=27\)
\(\Rightarrow x^8=3^3.3^5\)
\(\Rightarrow x^8=3^8\)
\(\Rightarrow x=\pm3\)
GIẢI PHƯƠNG TRÌNH
1)\(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
2)x(x+1)(x+2)(x+3)=24
3)\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
4)\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903-x}{91}+4=0\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
Tính A
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(3A-A=\left(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(2A=3-\dfrac{1}{729}=\dfrac{2186}{729}\)
\(A=\dfrac{2186}{729}\div2=\dfrac{1093}{729}\)
A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
Tìm x,y biết:
1) 3^X-1 = 1/243
2) 81^-2X x 27^X=9^5
3) ( x-y+3)^2 + (y-1)^2=0