Cho x,y>0 thoả mãn: x+y\(\le\) 1. Tìm Min: P=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
Cho x,y >0 thoả mãn x+y ≤ 1. Tìm GTNN của P=\(\dfrac{1}{x^2+y^2}\)+ \(\dfrac{1}{xy}\)+ 4xy.
`P=1/(x^2+y^2)+1/(xy)+4xy`
`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`
Áp dụng bunhia dạng phân thức
`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`
Mà `(x+y)^2<=1`
`=>1/(x^2+y^2)+1/(2xy)>=4`
Áp dụng cosi:
`4xy+1/(4xy)>=2`
`4xy<=(x+y)^2<=1`
`=>1/(4xy)>=1`
`=>P>=4+2+1=7`
Dấu "=" `<=>x=y=1/2`
Cho \(x,y\in R\) thoả mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) .
Tìm MAX, MIN \(P=xy\)
cho x,y>0 thỏa mãn: x+y=1
tìm Min \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel có:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)
áp dụng BDT AM-GM
\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)
dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)
cho \(x;y>\dfrac{\sqrt{5}-1}{2}\) thỏa mãn \(x+y=xy\)
tìm min\(\dfrac{1}{x^2+x-1}+\dfrac{1}{y^2+y-1}\)
\(x+y=xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=1\)
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y}\right)=\left(a;b\right)\Rightarrow a+b=1\) \(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)
\(P=\dfrac{a^2}{1+a-a^2}+\dfrac{b^2}{1+b-b^2}\ge\dfrac{\left(a+b\right)^2}{2+a+b-\left(a^2+b^2\right)}=\dfrac{1}{3-\left(a^2+b^2\right)}\ge\dfrac{1}{3-\dfrac{1}{2}}=\dfrac{2}{5}\)
Dấu "=" xảy ra khi \(x=y=2\)
cho các số thực dương thoả mãn: \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
CMR: \(\sqrt{\dfrac{xy}{x+y+2z}}+\sqrt{\dfrac{yz}{y+z+2x}}\sqrt{\dfrac{zx}{z+x+zy}}\le\dfrac{1}{2}\)
Có \(\sqrt{\dfrac{xy}{x+y+2z}}=\dfrac{\sqrt{xy}}{\sqrt{x+y+2z}}\)\(=\dfrac{2\sqrt{xy}}{\sqrt{\left(1+1+2\right)\left(x+y+2z\right)}}\)\(\le\dfrac{2\sqrt{xy}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}\) (theo bunhia dưới mẫu)\(\le\dfrac{2\sqrt{xy}}{4}\left(\dfrac{1}{\sqrt{x}+\sqrt{z}}+\dfrac{1}{\sqrt{y}+\sqrt{z}}\right)\)
\(\Leftrightarrow\sqrt{\dfrac{xy}{x+y+2z}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}}{\sqrt{y}+\sqrt{z}}\right)\)
Tương tự cũng có:
\(\sqrt{\dfrac{yz}{y+z+2x}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{yz}}{\sqrt{y}+\sqrt{x}}+\dfrac{\sqrt{yz}}{\sqrt{z}+\sqrt{x}}\right)\)
\(\sqrt{\dfrac{zx}{z+x+2y}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{zx}}{\sqrt{z}+\sqrt{y}}+\dfrac{\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
Cộng vế với vế ta được:
\(VT\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}+\sqrt{yz}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}+\sqrt{zx}}{\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{yz}+\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
\(\Leftrightarrow VT\le\dfrac{1}{2}\left(\sqrt{y}+\sqrt{x}+\sqrt{z}\right)=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{9}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho x>0, y>0 thoã x+y≤1. Tìm GTNN của biểu thức
A=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:
\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=
\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)
Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Cho x, y > 0 và xy = 1. Tìm GTLN của \(A=\dfrac{x}{x^4+y^2}+\dfrac{y}{x^2+y^4}\)
Cho x, y > 0, thỏa mãn x + y \(\le\) 1. Tìm GTNN của \(B=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
giai bai toan hieu cua hai so tu nhien la 17 chu so hang don vi cua so bi tru 3.Neu bo chu so han vi cng doua so bi tru ta duoc so tru tim so tru va so bi tru ai biet giup minh voi
cho x,y>0 thoả mãn x+y ≤ 1.
tình Min \(A=\frac{1}{x^2}+\frac{1}{^{y2}}+\frac{2}{xy}+4xy\)
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)
Do x,y\(\ge\)0
Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)
Và \(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)
Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)
Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)
mình đang còn suy nghĩ đây là bản nháp bạn xem thử