cmr: a=\(n^3\left(n^2-7\right)^2-36n⋮7\) với mọi n
CMR :
\(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với mọi n thuộc Z
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7
CMR: với mọi số nguyên n thì số: A=\(n^3\left(n^2-7\right)^2-36n\) chia hết cho 105
Dễ dàng phân tích được
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)
Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)
a) CMR:\(5x^3+15n^2+10n\)
Luôn chia hết cho 30 với mọi n thuộc Z
b) CMR: \(n^3\left(n^2-7\right)-36n\)
Chia hết cho 105 với mọi x thuộc Z
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
cmr:
\(a=n^3\left(n^2-7\right)^2-36n⋮7\forall n\)
Ta có:
\(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n^3\left(n^4-14n^2+49\right)-36n\)
\(A=n^7-14n^5+49n^3-36n\)
\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)
\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)
\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)
\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)
\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)
\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)
*Tích 7 số nguyên liên tiếp chia hết cho 7.
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
Chứng minh rằng \(A=n^3\left(n^2-7\right)^2-36n\) chia hết cho 5040 với mọi số tự nhiên n
Xét \(5040=2^4.3^2.5.7\)
Phân tích:
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
Ta có:
\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)
\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)
Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:
- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)
- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)
- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
1, Phân tích đa thức thành nhân tử : \(x^3+6x^2+11x+6\)
2, Cmr với mọi số nguyên n thì số : \(A=n^3\left(n^2+7\right)^2-36n\) chia hết cho 105
1. \(x^3+6x^2+11x\) +6
= \(x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
= \(\left(x+3\right)\left(x^2+3x+2\right)\)
=(x+3)(x+1)(x+2)
2. Sua \(n^3\left(n^2+7\right)^2-36n\) thanh \(n^3\left(n^2-7\right)^2-36n\)
A= \(n^3\left(n^2-7\right)^2-36n\)
= \(n^7-14n^5+49n^3-36n\)
= (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Day la tich cua 7 so tu nhien lien tiep=> A \(⋮105\)
cmr:\(n^3\left(n^2-7\right)^2-36n⋮210\forall n\in N\)
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 210
1, Phân tích đa thức thành nhân tử : \(x^3+6x^2+11x+6\)
2, Cmr với mọi số nguyên n thì số : A=\(n^3\left(n^2-7\right)^2-36n\) chia hết cho 105
1) \(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
2) \(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)
\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)
\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)
\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)
\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)
Rồi sao nữa còn nghĩ :))