Cho a, b>0 và a+b =1 . tìm Min A =\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)
Cho a,b > 0 và ab = 1:
Tìm Min của P = \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{2}{a^2+b^2}\)
ab=1
⇒ \(a=\dfrac{1}{b}\)
⇒ \(a^2=\dfrac{1}{b^2}\)
Thay vào P:
\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)
\(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)
Áp dụng BĐT Cô Si cho 2 số dương
⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)
\(=2\sqrt{2}\)
Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1
Cho a,b >0 và \(a+b\le3\). Tìm min
\(K=\dfrac{1}{a^2+b^2-2\left(a+b\right)+2}+\dfrac{1}{ab-\left(a+b\right)+1}+4\left(ab-a-b\right)\)
Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)
Cho a, b > 0 và a+b=1.
Tìm MIN của P= \(\dfrac{18}{a^2+b^2}+\dfrac{5}{ab}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$P=\frac{18}{a^2+b^2}+\frac{10}{2ab}\geq \frac{(\sqrt{18}+\sqrt{10})^2}{a^2+b^2+2ab}$
$=\frac{(\sqrt{18}+\sqrt{10})^2}{(a+b)^2}=(\sqrt{18}+\sqrt{10})^2=28+12\sqrt{5}$
Vậy $P_{\min}=28+12\sqrt{5}$
1. Cho a,b >0; a+b ≤ 1
Tìm min \(N=ab+\dfrac{1}{ab}\)
2. Cho a,b,c >0 t/m: a+b+c ≥ 6
Tìm min \(P=5a+6b+7c+\dfrac{1}{a}+\dfrac{8}{b}+\dfrac{27}{c}\)
3. Cho a,b,c ∈ \(\left[-1;2\right]\) và \(a^2+b^2+c^2=6\)
\(CM:\) a+b+c ≥ 0
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24
Cho a,b> 0 và ab =1.Tìm Min P=\(\dfrac{a^3}{1+b}\) + \(\dfrac{b^3}{1+a}\)
\(\left(a+b\right)^2\ge4ab=4\Rightarrow a+b\ge2\)
\(P=\dfrac{a^4}{a+ab}+\dfrac{b^4}{b+ab}\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+2ab}=\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{a+b+2}\)
\(\ge\dfrac{\dfrac{1}{2}\left(a+b\right)^2.2ab}{a+b+2}=\dfrac{\left(a+b\right)^2}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a+b\right)^2}{a+b+2}\)
\(\ge\dfrac{\dfrac{1}{4}\left(a+b\right)^2+3ab}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+1+2}{a+b+2}\)
\(\ge\dfrac{2\sqrt{\dfrac{1}{4}\left(a+b\right)^2.1}+2}{a+b+2}=\dfrac{a+b+2}{a+b+2}=1\)
Dấu = xảy ra khi \(a=b=1\)
Cho các số thực a,b thỏa mãn ab>0. Tìm Min của biểu thức \(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-1\)
Chắc chắn đây không phải là 1 đề bài chính xác
1. Cho a,b >0
Tìm min: Q= \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
2. Cho a,b,c >0 và a+b+c ≤ 1
Tìm min P=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)
\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho a,b,c > 0 , a + b + c = 1. Tìm Min P = \(\dfrac{3}{ab+bc+ca}+\dfrac{5}{a^2+b^2+c^2}\)
Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)
\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$
Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$
$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$
Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$
Áp dụng BĐT Bunhiacopxky:
$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$
$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$
Vậy $P_{\min}=11+2\sqrt{30}$
Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$
Cho \(a,b>0;ab=1\) . Tìm Min \(P=\dfrac{\left(a+b-1\right)\left(a^2+b^2\right)}{a+b}\)
cho a+b=2 a,b>0 tìm min F=\(\dfrac{a^2}{a+1}\)+\(\dfrac{b^2}{b+1}\)
Áp dụng BĐT :
\(\dfrac{a^{^2}}{x}+\dfrac{b^{^2}}{y}\ge\dfrac{\left(a+b\right)^2}{\left(x+y\right)}\) (Bạn tự chứng minh nhé)
\(F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{\left(a+b\right)^2}{a+1+b+1}=\dfrac{\left(a+b\right)^2}{a+b+2}\)
\(\Rightarrow F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{2^2}{2+2}=1\)
Vậy \(Min\left(F\right)=1\)