Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Yuri
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 10 2020 lúc 16:44

BĐT đã cho sai

Phản ví dụ: \(a=-2;b=-1\) thì \(a^5+b^5=-33\)

\(\left(a^3+b^3\right)ab=-18\)

Rõ ràng trong trường hợp này \(a^5+b^5< \left(a^3+b^3\right)ab\)

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 7:47

Áp dụng BĐT cosi:

\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)

Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)

Anh Phạm Phương
Xem chi tiết
tthnew
29 tháng 9 2019 lúc 10:05

c và d ở đâu vại:>

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a= b

Ta có đpcm

Meoww
Xem chi tiết
Lê Ng Hải Anh
14 tháng 6 2018 lúc 9:47

Ta có : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+4\ge ab+2a+2b\)

\(\Leftrightarrow2\left(a^2+b^2+4\right)\ge2\left(ab+2a+2b\right)\)

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)

\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\) 

\(\Leftrightarrow a^2+a^2+b^2+b^2+4+4-2ab-4a-4b\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)

Bất đẳng thức cuối cùng luôn đúng nên ta có đpcm

Dấu đẳng thức xảy ra khi và chỉ khi a=b=2

Lưu Phương Thảo
Xem chi tiết
Linh_Windy
5 tháng 10 2017 lúc 18:46

Chị cx học Tê Tiêu ạ,A mấy ạ

dinhkhachoang
Xem chi tiết
dinhkhachoang
14 tháng 3 2017 lúc 12:23

\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O

=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)

\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)

\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)

=\(\left(-a^n\right).a^k\)

Trương Mai Khánh Huyền
Xem chi tiết
Hung nguyen
5 tháng 1 2018 lúc 16:39

\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)

\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)

Big City Boy
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 23:15

Áp dụng bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) ta có:

\(8\left(a^4+b^4\right)\ge4\left(a^2+b^2\right)^2=\left[2\left(b^2+c^2\right)\right]^2\ge\left(a+b\right)^4\).

Anh Phạm Phương
Xem chi tiết