Giải hệ phương trình \(\left\{{}\begin{matrix}y+xy^2=-6x^3\\1+x^2y^3=19x^3\end{matrix}\right.\)
Giải bất phương trình, hệ phương trình
\(\dfrac{x^2-\left|x\right|-12}{x-3}=2x\)
\(\left\{{}\begin{matrix}y+y^2x=-6x^2\\1+x^3y^3=19x^3\end{matrix}\right.\)
b.
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) hệ tương đương:
\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)
Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)
Cộng vế với vế:
\(\left(u+v\right)^3=1\Rightarrow u+v=1\)
Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)
Theo Viet đảo, u và v là nghiệm của:
\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)
\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)
a.
ĐKXĐ: \(x\ne3\)
- Với \(x\ge0\) pt trở thành:
\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)
\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)
- Với \(x< 0\) pt trở thành:
\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)
\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)
Vậy pt đã cho vô nghiệm
Giải hệ PT: \(\left\{{}\begin{matrix}1+x^2y^2=19x^3\\y+xy^2=-6x^2\end{matrix}\right.\)
Giải các hệ phương trình sau :
a, \(\left\{{}\begin{matrix}x^2+xy=y^2+1\\3x+y=y^2+3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{matrix}\right.\)
Bài 1: Giải phương trình :
\(\left\{{}\begin{matrix}\sqrt{x+3}-\sqrt{y-1}=3\\\sqrt{x+3}+y-2x=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1+\left(xy\right)^3=19x^2\\xy^2+y=-6x^2\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-3\\y=b^2+1\end{matrix}\right.\)
Ta được: \(\left\{{}\begin{matrix}a-b=3\\a+b^2+1-2\left(a^2-3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=a-3\\a+b^2-2a^2+6=0\end{matrix}\right.\) (\(b\ge0\Rightarrow\)\(a\ge3\))
\(\Rightarrow a+\left(a-3\right)^2-2a^2+6=0\)
\(\Leftrightarrow-a^2-5a+15=0\Rightarrow\left[{}\begin{matrix}a=\frac{-5+\sqrt{85}}{2}< 3\left(l\right)\\a=\frac{-5-\sqrt{85}}{2}< 3\left(l\right)\end{matrix}\right.\)
Vậy hệ đã cho vô nghiệm
b/ Đề này ko giải được (nghiệm phức dài 3 trang giấy), chỉ giải được khi hệ là \(\left\{{}\begin{matrix}1+\left(xy\right)^3=19x^3\\xy^2+y=-6x^2\end{matrix}\right.\)
Khi đó nhận thấy \(x=0\) ko phải nghiệm, hệ tương đương:
\(\left\{{}\begin{matrix}\left(xy+1\right)\left(x^2y^2-xy+1\right)=19x^3\\y\left(xy+1\right)=-6x^2\end{matrix}\right.\)
\(\Rightarrow\frac{x^2y^2-xy+1}{y}=\frac{19x^3}{-6x^2}=\frac{-19x}{6}\)
\(\Leftrightarrow6x^2y^2-6xy+6=-19xy\)
\(\Leftrightarrow6x^2y^2+13xy+6=0\Rightarrow\left[{}\begin{matrix}xy=-\frac{3}{2}\\xy=-\frac{2}{3}\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}19x^2=1+\left(-\frac{2}{3}\right)^3\\19x^2=1+\left(-\frac{3}{2}\right)^3\end{matrix}\right.\) \(\Rightarrow...\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-xy+y^2=\dfrac{29}{3}\\27\left(x^3+y^3\right)=1072\end{matrix}\right.\)
giải hệ pt sau: \(\left\{{}\begin{matrix}xy^2+y=-6x^2\\x^3y^3+1=19x^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(xy+1\right)=-6x^2\\\left(xy+1\right)\left(x^2y^2-xy+1\right)=19x^3\end{matrix}\right.\)
Nhận thấy \(x=0\) ko phải nghiệm, chia vế cho vế:
\(\frac{y}{x^2y^2-xy+1}=\frac{-6}{19x}\)
\(\Leftrightarrow-19xy=6x^2y^2-6xy+6\)
\(\Leftrightarrow6x^2y^2+13xy+6=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\frac{2}{2}\\xy=-\frac{3}{2}\end{matrix}\right.\)
Thay xuống pt dưới ...
Giải hệ phương trình \(\left\{{}\begin{matrix}6x^2-y-xy^2=0\\5x^2-x^2y^2-1=0\end{matrix}\right.\)
Tham khảo nha:
https://hoc247.net/hoi-dap/toan-9/giai-he-phuong-trinh-y-xy-2-6x-2-1-x2y-2-5x-2-faq361806.html
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+2xy^2=24\\y^3+6x^2y=24\end{matrix}\right.\)
Bạn xem lại đề, nghiệm của hệ này rất xấu (chính xác là ko thể giải được nếu ko áp dụng công thức nghiệm Cardano của pt bậc 3)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+y^3=65\\x^2y+xy^2=20\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^3+y^3=65\\3x^2y+3xy^2=60\end{matrix}\right.\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=125\)
\(\Leftrightarrow\left(x+y\right)^3=125\Leftrightarrow x+y=5\Rightarrow y=5-x\)
Thế vào pt đầu:
\(x^3+\left(5-x\right)^3=65\)
\(\Leftrightarrow x^2-5x+4=0\Rightarrow\left[{}\begin{matrix}x=1;y=4\\y=4;y=1\end{matrix}\right.\)