Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 16:11

\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)

\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2020 lúc 15:09

\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)

\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=2\left(a+b+c\right)\)

Trần Ngọc Linh
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 22:10

\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)

\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)

Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)

\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)

Hoàng Mỹ Hạnh
Xem chi tiết
My Hà
Xem chi tiết
ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 22:18

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

Nguyễn Đức Trí
15 tháng 9 2023 lúc 22:24

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

Trần Ngọc Linh
Xem chi tiết
My Hà
Xem chi tiết
Đỗ Tuệ Lâm
7 tháng 1 2022 lúc 14:45

D=\(\dfrac{abc+a+b+c-1-ab-bc-ca}{a^2b+1-a^2-b}\)

\(=\dfrac{\left(abc-bc\right)-\left(ca-c\right)-\left(ab-b\right)+\left(a-1\right)}{\left(a^2b-a^2\right)+\left(1-b\right)}\)

\(=\dfrac{bc\left(a-1\right)-c\left(a-1\right)-b\left(a-1\right)+\left(a-1\right)}{a^2\left(b-1\right)+\left(1-b\right)}\)

\(=\dfrac{\left(a-1\right)\left(bc-c-b+1\right)}{a^2\left(b-1\right)-\left(b-1\right)}=\dfrac{\left(a-1\right)\left[\left(bc-c\right)-\left(b-1\right)\right]}{\left(b-1\right)\left(a^2-1\right)}\)

\(=\dfrac{\left(a-1\right)\left[c\left(b-1\right)-\left(b-1\right)\right]}{\left(b-1\right)\left(a-1\right)\left(a+1\right)}=\dfrac{\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(b-1\right)\left(a-1\right)\left(a+1\right)}\)

\(=\dfrac{c-1}{a+1}\)

 

Trần anh đại
Xem chi tiết
Nguyễn Ngọc Mai Anh
24 tháng 6 2017 lúc 7:54

đây là một hằng đẳng thức nha bạn

=a3+b3+c3-3abc

Trần anh đại
24 tháng 6 2017 lúc 7:58

thank

Trần anh đại
24 tháng 6 2017 lúc 7:59

cho mình cách giải

Tôi tên là moi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:42

Câu 4: 

\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)