Rút gọn: \(\dfrac{ab+bc+ca}{a+b+c}\)
Cho a+b+c=0 (a khác 0, b khác 0, c khác 0). Rút gọn các biểu thức: \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)
\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Rút gọn biểu thức: \(B=\left(ab+bc+ca\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-abc.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
a, Tìm tất cả các số tự nhiên n sao cho số A=\(\dfrac{1-6n}{2n-3}\) là một số nguyên.
b,Cho các phân số \(\dfrac{ab}{a+2b}\)=\(\dfrac{3}{2}\); \(\dfrac{bc}{b+2c}\)=\(\dfrac{4}{3}\);\(\dfrac{ca}{c+2a}\)=3 . Rút gọn phân số : T=\(\dfrac{abc}{ab+bc+ca}\)
Rút gọn C=\(\dfrac{\text{ a^2b+b^2c+c^2a-ab^2-bc^2-ca^2}}{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
Rút gọn:D=\(\dfrac{abc+a+b+c-1-ab-bc-ca}{a^2b+1-a^2-b}\)
D=\(\dfrac{abc+a+b+c-1-ab-bc-ca}{a^2b+1-a^2-b}\)
\(=\dfrac{\left(abc-bc\right)-\left(ca-c\right)-\left(ab-b\right)+\left(a-1\right)}{\left(a^2b-a^2\right)+\left(1-b\right)}\)
\(=\dfrac{bc\left(a-1\right)-c\left(a-1\right)-b\left(a-1\right)+\left(a-1\right)}{a^2\left(b-1\right)+\left(1-b\right)}\)
\(=\dfrac{\left(a-1\right)\left(bc-c-b+1\right)}{a^2\left(b-1\right)-\left(b-1\right)}=\dfrac{\left(a-1\right)\left[\left(bc-c\right)-\left(b-1\right)\right]}{\left(b-1\right)\left(a^2-1\right)}\)
\(=\dfrac{\left(a-1\right)\left[c\left(b-1\right)-\left(b-1\right)\right]}{\left(b-1\right)\left(a-1\right)\left(a+1\right)}=\dfrac{\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(b-1\right)\left(a-1\right)\left(a+1\right)}\)
\(=\dfrac{c-1}{a+1}\)
rút gọn biểu thức sau : (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
đây là một hằng đẳng thức nha bạn
=a3+b3+c3-3abc
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)