CM: a\(^4\)+b\(^4\)+c\(^4\)-1 ≥ 2a(ab\(^2\)+c-a+1)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
cm a/a^4+b^4+c^4-2a^2-b^2-2a^2c^2<0
a^4+b^4+c^2+1≥2a(ab\(^2\)-a+c+1)
Lời giải:
Xét hiệu:
$a^4+b^4+c^2+1-2a(ab^2-a+c+1)=a^4+b^4+c^2+1-2a^2b^2+2a^2-2ac-2a$
$=(a^4+b^4-2a^2b^2)+(c^2+a^2-2ac)+(a^2-2a+1)$
$=(a^2-b^2)^2+(c-a)^2+(a-1)^2\geq 0$
$\Rightarrow a^4+b^4+c^2+1\geq 2a(ab^2-a+c+1)$
Ta có đpcm.
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2\\ c=a\\ a=1\end{matrix}\right.\Leftrightarrow \pm b=a=c=1\)
\(VT-VP=\frac{\left(\sqrt{2}a^2-\sqrt{2}b^2+c+1-2a\right)^2}{4}+\frac{\left(\sqrt{2}a^2-\sqrt{2}b^2+2a-c-1\right)^2}{4}+\frac{\left(c-1\right)^2}{2}\ge0\)
Cho a+b+c=0 CMR
a) a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)
b) a^4+b^4+c^4= 2(ab+bc+ca)^2
c) a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
chứng minh phản chứng a^4 + b^4 c^2 >= 2a(ab^2-a+c+1) với mọi a,b,c
\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$
Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$
Áp dụng Cauchy-Schwarzt ta có
$\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$
Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$
Bất đẳng thức đã cho tương đương $ab.bc+bc.cd+cd.da+da.ab\leq 4$ với $a+b+c+d=4$
Chuyển $\left ( ab,bc,cd,da \right )\Rightarrow (x,y,z,t)$
Ta có $x+y+z+t=ab+bc+cd+ad \leq \frac{(a+b+c+d)^2}{4}=4$
Lại có $ab^2c+bc^2d+cd^2a+da^2b=xy+yz+zt+tx \leq \frac{(x+y+z+t)^2}{4} \leq \frac{4^2}{4}=4$
Vậy ta có đpcm
Dấu = xảy ra khi $a=b=c=d=1$
doc lam sao
2. Cho a, b > 0. CM: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng CM các bđt sau:
a)Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4.\) CM:\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
b)\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b=c}{2}\left(a,b,c>0\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác cm:
a)\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
d)\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)
a/ Với mọi số thực ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:
\(a+b>c\Rightarrow ac+bc>c^2\)
\(a+c>b\Rightarrow ab+bc>b^2\)
\(b+c>a\Rightarrow ab+ac>a^2\)
Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
b/
Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương
Ta có:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
Nhân vế với vế:
\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(VT=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
Mặt khác theo BĐT tam giác ta có:
\(\left\{{}\begin{matrix}a+b>c\\\left|a-b\right|< c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2>c^2\\\left(a-b\right)^2< c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-c^2>0\\c^2-\left(a-b\right)^2>0\end{matrix}\right.\)
\(\Rightarrow VT>0\)
1.cho B= a^4+b^4+c^4 -2a^2.b^2-2a^2.c^2-2b^2.c^2 .CM : a,b,c là đọ dài ba cạnh của tam giác
2. tìm giá trị nhỏ nhất vcủa biểu thức
B= x^2+y^+2xy-2y+2020
Bài 1: Tìm x
a, (8-5x)(x+2)+4(x-2)(x+1)+(x-2)(x+2)=0
b, (8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1)-33
Bài 2: Cm các đẳng thức sau:
a, (x+y)(x3-x2y+xy^2-y^3)=x^4+y^4
b (a-1)(a-2)+(a-3)(a+4)-(2a^2+5a-34)=24-7a
c. (a+c)(a-c)-b(2a-b)-(a-v+c)(a-b-c)=o
a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0
<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0
<=> -6x -4 = 0
<=> x= 4/6
Ta có VT =\(a^2-c^2-2ab+b^2-\left[\left(a-b\right)^2-c^2\right]\)
= \(a^2-c^2-2ab+b^2-\left(a^2-2ab+b^2\right)+c^2\)
=\(a^2-c^2-2ab+b^2-a^2+2ab-b^2+c^2\)
= 0 =VP (đpcm)