Định m để pt sau có ba nghiệm phân biệt
x^3-(2m+1)x^2+3(m+4)x-m-12=0
Định m để pt sau có ba nghiệm phân biệt
x^3-(2m+1)x^2+3(m+4)x-m-12=0
Lời giải:
\(x^3-(2m+1)x^2+3(m+4)x-m-12=0\)
\(\Leftrightarrow (x^3-x^2)-(2mx^2-2mx)+(mx-m)+(12x-12)=0\)
\(\Leftrightarrow x^2(x-1)-2mx(x-1)+m(x-1)+12(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2-2mx+m+12)=0\)
Để pt đã cho có 3 nghiệm phân biệt thì pt:
\(x^2-2mx+m+12=0\) phải có 2 nghiệm phân biệt khác 1:
\(\Leftrightarrow \left\{\begin{matrix} \Delta'=m^2-(m+12)>0\\ 1^2-2m.1+m+12\neq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (m-4)(m+3)>0\\ 13-m\neq 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} m> 4\\ m< -3\end{matrix}\right.\) và $m\neq 13$
Cho phương trình \(x^4+\left(1-2m\right)x^2+m^2-1=0\)
a. Định m để pt vô nghiệm.
b. Định m để pt có 2 nghiệm phân biệt.
c. Định m để pt có 3 nghiệm phân biệt.
d. Định m để pt có 4 nghiệm phân biệt.
(Giải chi tiết giúp em em cảm ơn ạ)
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
Bt:a, xác định m để pt ẩn x sau có 2 nghiệm dương phân biệt: x^2-(m+3)x+3m=0
b, xác định m để pt ẩn x sau có nghiệm này bằng 3 nghiệm kia: x^2-(2m+1)x+m^2+m-6=0
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
Chp pt: \(x^2-\left(2m+3\right)m^2+3m+2=0\)
1)CM pt luôn có 2 nghiệm phân biệt
2)Tìm m để pt có 1 nghiệm bằng 2.Tìm nghiệm còn lại
3)Xác định m để pt có 2 nghiệm thỏa mãn: \(-3< x_1< x_2< 6\)
4)Xác định m để pt có 1 nghiệm bằng bình phương nghiệm kia
cho pt x^2 - (2m+3)x + m^2 + 3m +2 =0 định m để pt có nghiệm này = ba nghiệm kia
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
Bài 4:Tìm m để pt sau có nghiệm kép:
a)\(x^2-\left(3-2m\right)x+m^2=0\)
b)\(x^2+\left(2m+1\right)x+m^2=0\)
a, x2 - (3 - 2m)x + m2 = 0
\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)
Vậy ...
b, x2 + (2m + 1)x + m2 = 0
\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)
Vậy ...
Chúc bn học tốt!
xác định m để phương trình x^3-(2m+1)x^2+(m^2+m+1)x-m^2+m-1=0 có ba nghiệm dương phân biệt
`(2m-5)x^2 -2(m-1)x+3=0`
xác định giá trị nguyên m để pt đã cho có 2 nghiệm phân biệt đều nguyên dương
- Với \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
- Với \(m\ne\dfrac{5}{2}\) ta có:
\(a+b+c=2m-5-2\left(m-1\right)+3=0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2m-5}\end{matrix}\right.\)
Do 1 là số nguyên dương nên để pt có 2 nghiệm pb đều nguyên dương thì:
\(\left\{{}\begin{matrix}\dfrac{3}{2m-5}\ne1\\\dfrac{3}{2m-5}\in Z^+\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne4\\2m-5=Ư\left(3\right)=\left\{1;3\right\}\end{matrix}\right.\) (do nghiệm nguyên dương và 3 dương nên ta chỉ cần xét các ước dương của 3)
\(\Rightarrow\left\{{}\begin{matrix}m\ne4\\m=\left\{3;4\right\}\end{matrix}\right.\)
\(\Rightarrow m=3\)
Đề là "hai nghiệm dương" hay "hai nghiệm nguyên dương" vậy em?