Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shin
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 7 2016 lúc 15:33

1. Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow a+b>2\sqrt{ab}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)

2. Áp dụng từ câu 1) , ta có : 

\(\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}>\frac{2}{1+2005}+\frac{2}{2+2004}+...+\frac{2}{2005+1}\)

\(\Leftrightarrow\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}< \frac{2.2005}{2006}=\frac{2005}{1003}\)

3. Ta có : \(\left(\frac{x^2+y^2}{x-y}\right)^2=\frac{x^4+2x^2y^2+y^4}{x^2-2xy+y^2}=\frac{x^4+y^4+2}{x^2+y^2-2}\)

Đặt \(t=x^2+y^2,t\ge0\Rightarrow\frac{x^4+y^4+2}{x^2+y^2-2}=\frac{t^2-2+2}{t-2}=\frac{t^2}{t-2}\)

Xét : \(\frac{t-2}{t^2}=\frac{1}{t}-\frac{2}{t^2}=-2\left(\frac{1}{t^2}-\frac{2}{t.4}+\frac{1}{16}\right)+\frac{1}{8}=-2\left(\frac{1}{t}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)

\(\Rightarrow\frac{t^2}{t-2}\ge8\Rightarrow\left(\frac{x^2+y^2}{x-y}\right)^2\ge8\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

Nguyễn Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:02

Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)

=10

Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)

\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)

\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)

Nguyễn Minh Hoàng
Xem chi tiết
nchdtt
Xem chi tiết
HT2k02
6 tháng 7 2021 lúc 12:19

Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:

\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)

Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)

Suy ra \(A\geq \frac{2.2014}{2015} = B\)

Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)

Vậy A>B

Nguyễn Việt Lâm
6 tháng 7 2021 lúc 12:20

Sử dụng BĐT: \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\) (với \(a\ne b\)) ta được:

\(A>\dfrac{2}{1+2014}+\dfrac{2}{2+2013}+...+\dfrac{2}{2014+1}\) (2014 số hạng)

\(A>\dfrac{2}{2015}+\dfrac{2}{2015}+...+\dfrac{2}{2015}=\dfrac{2.2014}{2015}\)

\(A>\dfrac{4028}{2015}\)

Vậy \(A>B\)

hello sun
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 8 2021 lúc 11:57

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

(100 số số hạng)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 21:00

a: ĐKXĐ: x>=0; x<>4

\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\cdot\dfrac{\sqrt{x}-2+2}{2}\)

\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}\)

\(=\dfrac{2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b: \(M=P\cdot Q=\dfrac{\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(M\left(M-1\right)=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-5x-x-3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)\left(-6x-2\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)\left(6x+2\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}+1\right)^2}\)

TH1: M>=căn M

=>M^2>=M

=>M^2-M>=0

=>5*căn x-1>=0

=>x>=1/25 và x<>4

TH2: M<căn M

=>5căn x-1<0

=>x<1/25

Kết hợp ĐKXĐ, ta được: 0<=x<1/25

Nguyễn Phương Chi
Xem chi tiết
HT.Phong (9A5)
7 tháng 9 2023 lúc 18:33

1) Ta thấy:

\(4=1+3=1+\sqrt{9}\)

\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)

Mà: \(\sqrt{8}< \sqrt{9}\)

\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)

\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)

\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)

2) Ta thấy:

\(2018< 2024\)

\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)

\(2025< 2026\)

\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)

Từ (1) và (2) ta có:

\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)

Baekhyun
Xem chi tiết
Bình Lê
13 tháng 8 2017 lúc 10:11

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

Bình Lê
13 tháng 8 2017 lúc 10:16

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

nguyễn thế minh
21 tháng 8 2017 lúc 8:21

a) A=\(\dfrac{1}{\sqrt{3}+\sqrt{5}}\)+\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)+\(\dfrac{1}{\sqrt{7}+\sqrt{9}}\)+...+\(\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

=\(\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)+\(\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)+\(\dfrac{\sqrt{9}-\sqrt{7}}{\left(\sqrt{7}+\sqrt{9}\right)\left(\sqrt{9}-\sqrt{7}\right)}\)+...+\(\dfrac{\sqrt{99}-\sqrt{97}}{\left(\sqrt{99}+\sqrt{97}\right)\left(\sqrt{99}-\sqrt{97}\right)}\)

=\(\dfrac{\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}}{2}\)

=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)

vậy A=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)

Lil Shroud
Xem chi tiết
Akai Haruma
22 tháng 8 2021 lúc 1:13

Lời giải:
\(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{11}}> \frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}=\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)