Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:
\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)
Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)
Suy ra \(A\geq \frac{2.2014}{2015} = B\)
Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)
Vậy A>B
Sử dụng BĐT: \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\) (với \(a\ne b\)) ta được:
\(A>\dfrac{2}{1+2014}+\dfrac{2}{2+2013}+...+\dfrac{2}{2014+1}\) (2014 số hạng)
\(A>\dfrac{2}{2015}+\dfrac{2}{2015}+...+\dfrac{2}{2015}=\dfrac{2.2014}{2015}\)
\(A>\dfrac{4028}{2015}\)
Vậy \(A>B\)