Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nchdtt

So sánh A và B

\(A=\dfrac{1}{\sqrt{1.2014}}+\dfrac{1}{\sqrt{2.2013}}+...+\dfrac{1}{\sqrt{2014.1}}\)

\(B=\dfrac{4028}{2015}\)

HT2k02
6 tháng 7 2021 lúc 12:19

Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:

\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)

Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)

Suy ra \(A\geq \frac{2.2014}{2015} = B\)

Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)

Vậy A>B

Nguyễn Việt Lâm
6 tháng 7 2021 lúc 12:20

Sử dụng BĐT: \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\) (với \(a\ne b\)) ta được:

\(A>\dfrac{2}{1+2014}+\dfrac{2}{2+2013}+...+\dfrac{2}{2014+1}\) (2014 số hạng)

\(A>\dfrac{2}{2015}+\dfrac{2}{2015}+...+\dfrac{2}{2015}=\dfrac{2.2014}{2015}\)

\(A>\dfrac{4028}{2015}\)

Vậy \(A>B\)