b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
Tính :
a)\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
b )\(\sqrt{1+2016^2}+\dfrac{2016^2}{2017^2}+\dfrac{2016}{2017}\)
Tính tổng:
\(S=\dfrac{1}{2\sqrt{1}+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
So sánh A và B
\(A=\dfrac{1}{\sqrt{1.2014}}+\dfrac{1}{\sqrt{2.2013}}+...+\dfrac{1}{\sqrt{2014.1}}\)
\(B=\dfrac{4028}{2015}\)
Tìm x,y thỏa mãn:
\(\dfrac{\sqrt{x-2015}-1}{x-2015}+\dfrac{\sqrt{y-2016}-1}{y-2016}=\dfrac{1}{2}\)
Bài 1 : NĂNG KHIẾU 2016-2017
A) Tính S=a+b biết a;b>0, a \(\ne\)b và \(\left(\dfrac{a\left(a-4b\right)+b\left(b+2a\right)}{a+b}\right):\left[\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\right]=2016\)
B) Giải: \(x\sqrt{x+5}=2x^2-5x\left(1\right)và\left\{{}\begin{matrix}\left(\sqrt{y}+x-3\right)\left(y+\sqrt{x}\right)=0\\x^2+y=5\end{matrix}\right.\)
cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}}{x-\sqrt{x}}\)
a, Rút gon P
b, Tính giá trị của P khi x=17-12\(\sqrt{2}\)
c,so sánh P với \(\sqrt{P}\)
Giúp mình làm câu b, với câu c, nhá . Mơn trước :3
so sánh \(\sqrt{2017}-\sqrt{2016}\)và \(\sqrt{2016}-\sqrt{2015}\)
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.