Chứng minh rằng
\(\left(n^2+3n+1\right)^2-1\) chia hết cho 24
Chứng minh rằng:
\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 với n là số tự nhiên
(n2+3n+1)2 -1
⇔(n2+3n+1-1)(n2+3n+1+1)
⇔(n2+3n)(n2+3n+2)
⇔n4+3n3+2n2+3n2+9n2+6n
⇔n4+6n3+11n2+6n
⇔n(n3+6n2+11n+6)
⇔n(n+1)(n+3)(n+2)⋮24
vì tích 4 số nguyên liên tiếp chia hết cho 24
Chứng minh rằng:
a)\(n^4+3n^3-n^2-3n\) chia hết cho 6, với n là số nguyên.
b) \(\left(2n-1\right)^3-2n+1\) chia hết cho 24, với n là số nguyên
Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)
Chứng minh rằng với mọi giá tyrij nguyên n , ta có
a)\(n^3+3n^2+2n\) chia hết cho 6
b)\(\left(n^2+n-1\right)^2-1\) chia hết cho 24
a)
n3+3n2+2n
= n3+ n2+2n2+2n
= n2(n+1) +2n(n+1)
= ( n+1)n(n+2)
Có n(n+1)(n+2) chia hết cho 6 vì là tích của 3 số nguyên liên tiếp
b)
(n2+n-1)2-1
= (n2+n-1-1)(n2+n-1+1)
= (n2+n-2)(n2+n)
= [ (n2-n) + (2n-2)] n (n+1)
= [ n(n-1) + 2(n-1)] n (n+1)
= n(n-1)(n+1)(n+2)
Có n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6
mà n(n-1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 và(n+1)(n+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
nên n(n-1)(n+1)(n+2) chia hết cho 4
\(\Rightarrow\) n(n-1)(n+1)(n+2) chia hết cho 24
a) n3+3n2+2n
=n(n2+3n+2)
=n(n2+2n+n+2)
=n[(n2+2n)+(n+2)]
=n[n(n+2)+(n+2)]
=n(n+2)(n+1) ⋮6 (3 số nguyên liên tiến nhân với nhau ⋮6) (đpcm)
Chứng minh rằng với mọi số nguyên n, ta có
a) \(n^3+3n^2+2n\) chia hết cho 6
b) \(\left(n^2+n-1\right)^2-1\)chia hết cho 24
Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\) là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.
Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\) là tích bốn số nguyên liên tiếp.
Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.
Chứng minh rằng với mọi số nguyên n thì
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
(n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 5n2 + 5n - 2 - n3 + 2 = 5(n2 + n) ⋮ 5
Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\) chia hết cho 5
Vậy \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho5(đpcm)
Chứng minh rằng: với mọi số nguyên n thì:
\(\left(n^3+3n-1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh rằng:
a) \(2017^{2010}\)không chia hết cho 2018
b) \(n^3+6n^2+8n⋮48\)với mọi n là số chẵn
c) (\(\left(n^2+3n+1\right)-1\)chia hết cho 24 với n là số tự nhiên
chứng minh rằng với mọi số nguyên n thì:
S=\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\) chia hết cho 5
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)