Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 1 2024 lúc 22:23

ĐKXĐ: \(x\ge-2;y\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:

\(a\left(a^2+1\right)=b\left(ab+1\right)\)

\(\Leftrightarrow a^3+a=ab^2+b\)

\(\Leftrightarrow a^3-ab^2+a-b=0\)

\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))

\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)

\(\Rightarrow y=x+2\)

Thế vào pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)

2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 14:38

1:

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)

=>x-3=0 hoặc \(\sqrt{x+3}=2\)

=>x=3 hoặc x+3=4

=>x=1(loại) hoặc x=3(nhận)

2:

\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)

=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)

=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)

=>4(12x^2-16x+3x-4)=(7x-6)^2

=>49x^2-84x+36=48x^2-52x-16

=>-84x+36=-52x-16

=>-32x=-52

=>x=13/8

3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)

=>|x-5|=5-x

=>x-5<=0

=>x<=5

4: \(\Leftrightarrow\left|x-4\right|=x+2\)

=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)

=>x>=-2 và -8x+16=4x+4

=>x=1

Lee Yeong Ji
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 8:13

Áp dụng BĐT Bunhiacopski:

Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)

\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)

Thắng
Xem chi tiết
missing you =
8 tháng 2 2022 lúc 22:13

\(đặt:\sqrt{x^2+1}=t>0\Rightarrow\left(x+3\right)t^2+4\left(x+2\right)t-16=0\)

\(\Leftrightarrow\left(t+4\right)\left(tx+3t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-4\left(loại\right)\\tx+3t-4=0\Leftrightarrow t=\dfrac{4}{x+3}\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x^2+1}=\dfrac{4}{x+3}\left(x>-3\right)\Leftrightarrow x^2+1=\dfrac{16}{\left(x+3\right)^2}\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+3\right)^2-16=0\Leftrightarrow x^4+6x^3+10x^2+6x-7=0\Rightarrow x=....\)

bài này nghiệm xấu quá

 

Nguyễn Trọng Cường
8 tháng 2 2022 lúc 22:22

1 cách khác \(\Rightarrow x+2+\dfrac{4}{\sqrt{x^2+1}}\cdot\left(x+2\right)-\dfrac{16}{x^2+1}+1=0\) 

Đặt a= x+2; b=\(\dfrac{4}{\sqrt{x^2+1}}\) pttt: \(a+ab-b^2+1=0\Leftrightarrow\left(b+1\right)\left(a-b+1\right)=0\Leftrightarrow a=b-1\) ( Vì b>0)

\(\Rightarrow x+2=\dfrac{4}{x^2+1}-1\) \(\Rightarrow...\)

Thắng
Xem chi tiết
Thắng
7 tháng 2 2022 lúc 14:51

giúp em vs ạ

 

 

phamthiminhanh
Xem chi tiết
missing you =
8 tháng 6 2021 lúc 19:22

a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)

\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)

b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)

\(=\left[3-4\right]^2=1\)

c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)

\(=121-48=73\)

d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)

\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)

\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)

\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)

e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)

\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)

\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)

 

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:15

\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+16}=\dfrac{\left(x+16\right)\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(\sqrt{x}+16\right)}\)

Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 18:50

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(a\left(a^2-b^2+1\right)=b\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{x+2}=\sqrt{y}\Rightarrow y=x+2\)

Thay xuống pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{2}{7}\left(loại\right)\end{matrix}\right.\)

Nguyễn Huy Hải
Xem chi tiết