(x^2-1)x(x+2)-x62x(x+2)=21
Tính (theo mẫu).
Mẫu: 1 x 2 = ? 1 x 2 = 1 + 1 = 2 1 x 2 = 2 |
1 x 3 1 x 4
1 x 6 1 x 5
Nhận xét: Số 1 nhân với số nào cũng bằng chính số đó.
1 x 3 = ? 1 x 3 = 1 + 1 + 1 = 3 1 x 3 = 3 | 1 x 4 = ? 1 x 4 = 1 + 1 + 1 + 1 = 4 1 x 4 = 4
|
1 x 6 = ? 1 x 6 = 1 + 1 + 1 + 1 + 1 + 1 = 6 1 x 6 = 6 | 1 x 5 = ? 1 x 5 = 1 + 1 + 1 + 1 + 1= 5 1 x 5 = 5 |
Tính bằng hai cách :
a) 3/22 x 3/11 x 22
b) ( 1/2 + 1/3 ) x 2/5
c) 3/5 x 17/21 + 17/21 x 2/5
a: \(=\dfrac{3}{22}\cdot22\cdot\dfrac{3}{11}=3\cdot\dfrac{3}{11}=\dfrac{9}{11}\)
b: \(=\dfrac{5}{6}\cdot\dfrac{2}{5}=\dfrac{1}{3}\)
c: \(=\dfrac{17}{21}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)=\dfrac{17}{21}\)
a : = \(\dfrac{3}{22}\). 22 . \(\dfrac{3}{11}\) = 3 . \(\dfrac{3}{11}\) = \(\dfrac{9}{11}\)
b : = \(\dfrac{5}{6}\). \(\dfrac{2}{5}\) = \(\dfrac{1}{3}\)
c: = \(\dfrac{17}{21}\)(\(\dfrac{3}{5}\) + \(\dfrac{2}{5}\) ) = \(\dfrac{17}{21}\)
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm x:
(x+4)^2+(x-1)^2-2(x-5)(5+x)=21
\(\Leftrightarrow x^2+8x+16+x^2-2x+1-2\left(x^2-25\right)=21\\ \Leftrightarrow2x^2+6x+17-2x^2+50=21\\ \Leftrightarrow6x=-46\Leftrightarrow x=-\dfrac{23}{3}\)
(x^2-1)(x^2-11)(x^2-21)(x^2-31)=-4924
(x^2-1)(x^2-11)(x^2-21)(x^2-31)=-4924
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Giải các phương trình sau
a ( 3x-1)^2 - (x+3)^2
b x^3-x/49 = 0
c x^2 -7x+12
d 4x^2 -3x -1 =0
e . 29-x/21 + 27-x/23 + 25-x/25 + 23-x/28 + 21-x/29
a) \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(=>\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(=>\left(4x+2\right)\left(2x-4\right)=0\)
\(=>4\left(2x+1\right)\left(x-2\right)=0\)
\(=>\orbr{\begin{cases}2x+1=0\\x-2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=-\frac{1}{2}\\x=2\end{cases}}\)
b)\(x^3-\frac{x}{49}=0=>x\left(x^2-\frac{1}{49}\right)=0=>x\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
\(=>x=0\)hoặc \(x=\frac{1}{7}\) hoặc \(x=-\frac{1}{7}\)
a)\(\(\left(3x-1\right)^2-\left(x+3\right)^2=0\)\)
\(\(\Leftrightarrow\left(3x-1-x-3\right)\left(3x-1+x+3\right)=0\)\)
\(\(\Leftrightarrow\left(2x-4\right)\left(4x+2\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\4x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)\)
b)\(\(x^3-\frac{x}{49}=0\)\)
\(\(\Leftrightarrow\frac{49x^3-x}{49}=0\)\)
\(\(\Leftrightarrow x\left(49x^2-1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\49x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(7x-1\right)\left(7x+1\right)=0\end{cases}}}\)\)\
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7};x=-\frac{1}{7}\end{cases}}\)\)
c)\(\(x^2-7x+12=0\)\)
\(\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)\)
d) \(\(4x^2-3x-1=0\)\)
\(\(\Leftrightarrow4x^2-4x+x-1=0\)\)
\(\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)\)
\(\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)\)
e) Tham khảo tại : [Toán 8]Giải phương trình | Cộng đồng học sinh Việt Nam - HOCMAI Forum
https://diendan.hocmai.vn/threads/toan-8-giai-phuong-trinh.290061/
_Y nguyệt_
a thiếu đề bạn nhé
b) \(x^3-\frac{x}{49}=0\)
\(\Rightarrow x\left(x^2-\frac{1}{49}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{49}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
Vậy.........
c) \(x^2-7x++12=0\)
\(\Rightarrow\left(x-3,5\right)^2-0,5^2=0\)
\(\Rightarrow\left(x-3,5+0,5\right)\left(x-3,5-0,5\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)
Vậy.....
d) \(4x^2-3x-1=0\)
\(\Rightarrow4x^2-3x+0,5625-1,5625=0\)
\(\Rightarrow\left(2x-0,75\right)^2-1,25^2=0\)
\(\Rightarrow\left(2x-0,75+1,25\right)\left(2x-0,75-1,25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+0,5=0\\2x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,25\\x=1\end{cases}}}\)
Vậy.....
\((x-1)^2+|x+21|-x^2-13=0\)
TH1: `x+21 >=0 <=> x >=-21`
`(x-1)^2+x+21-x^2-13=0`
`<=>x^2-2x+1+x+21-x^2-13=0`
`<=>-x=-9`
`<=>x=9 (TM)`
TH2: `x<-21`
`(x-1)^2-(x+21)-x^2-13=0`
`<=>-3x-33=0`
`<=>x=-11(L)`
Vậy `S={9}`.
\(\left(x-1\right)^2+\left|x+21\right|-x^2-13=0\)
\(\Leftrightarrow2x+12=\left|x+21\right|\) (*)
Do đó 2x + 12 \(\ge0\Leftrightarrow x\ge-6\).
Khi đó (*) \(\Leftrightarrow\left[{}\begin{matrix}x+21=2x+12\\x+21=-\left(2x+12\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\left(TM\right)\\x=-11\left(\text{\left\{loại\right\}}\right)\end{matrix}\right.\)