Cho a, b, c, d >0. CMR:
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
Cho a, b, c, d >0. Chứng minh rằng: \(\sqrt{\left(a+b\right).\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
Ta có : \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+2\sqrt{acbd}+bd\)
\(\Leftrightarrow ad-2\sqrt{adbc}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(ad=bc\)
Vậy ...
Sử dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(a+b\right)\left(c+d\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{c}^2+\sqrt{d}^2\right)\)
\(\ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
\(< =>\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\left(đpcm\right)\)
okey?
Cho các số thực dương a, b, c, d. Chứng minh rằng: \(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge\dfrac{\sqrt{bd}}{ac+\sqrt{bd}}\)
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
cho các số thực dương a,b,c,d. Chứng minh rằng: \(\frac{b}{\left(a+\sqrt{b}\right)^2}+\frac{d}{\left(c+\sqrt{d}\right)^2}\ge\frac{\sqrt{bd}}{ac+\sqrt{bd}}\)
áp dụng BĐT bunhia
a, cho \(2x^2+3y^2\le5\)
cmr \(-5\le2x+3y\le5\)
b, cho a, b >c>0 cmr
\(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\le\sqrt{ab}\)
c, cmr \(a^2+b^2+c^2\ge ab+bc+ac\)
d, \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
lm đc bài nào cũng đc cả nhớ bunhia nha
Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)
a.
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
b.
\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)
\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)
Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)
Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.
c.
bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
d.
bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)
\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:
\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)
Cho các số thực dương a,b,c,d. Chung minh rang \(\frac{b}{\left(a+\sqrt{b}\right)^2}+\frac{a}{\left(b+\sqrt{a}\right)^2}\ge\frac{\sqrt{bd}}{ac+\sqrt{bd}}\)
Giup mk voi cac ban
Chứng minh với a; b; c; d > 0
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) \(\ge\) \(\left(a+b\right)\left(c+d\right)\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
Áp dụng BĐT Bunhiacopxki:
CMTT :
Ta có :
chứng minh bất đẳng thức với các số a,b,c là các số dương:
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)
dấu bằng xảy ra khi ad=bc
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Bài 3:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)