Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Thùy Trang
Xem chi tiết
ctk_new
23 tháng 9 2019 lúc 15:29

Ta có: \(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x+y\right)+2x^2y^2\)

\(=2\left[\left(x^2+y^2\right)+2xy\left(x+y\right)+x^2y^2\right]\)

\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)

Nguyễn Linh Chi
23 tháng 9 2019 lúc 15:51

Em xem lại dòng thứ 3 và 4, chưa đúng rồi em !

Min
Xem chi tiết
Trần Minh Hoàng
2 tháng 8 2019 lúc 9:26

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

Long Sơn
Xem chi tiết
@DanHee
4 tháng 6 2023 lúc 20:21

\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\\ =x^4-x^3y+x^3y-x^2y^2+x^2y^2-y^4\\ =\left(x^4-y^4\right)+\left(-x^3y+x^3y\right)+\left(-x^2y^2+x^2y^2\right)\\ =x^4-y^4=VP\)

YangSu
4 tháng 6 2023 lúc 20:21

\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)

\(=x^4+0+0+0-y^4\)

\(=x^4-y^4=VP\left(dpcm\right)\)

乇尺尺のレ
4 tháng 6 2023 lúc 20:40

\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\\ \Leftrightarrow x.x^3+x.x^2y+x.xy^2+x.y^3-y.x^3-y.x^2y-y.xy^2-y.y^3=x^4-y^4\\ \Leftrightarrow x^4+x^3y+x^2y^2+xy^3-xy^3-x^2y^2-xy^3-y^4=x^4-y^4\\ \Leftrightarrow\left(x^4-y^4\right)+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)=x^4-y^4\\ \Leftrightarrow x^4-y^4+0+0+0=x^4-y^4 \\ \Leftrightarrow x^4-y^4=x^4-y^4\left(đpcm\right)\)

Alayna
Xem chi tiết
Alayna
25 tháng 7 2017 lúc 22:27

khai triển và giải thích để e hiểu giúp với ạ !!

Nguyễn Thị Kim Anh
30 tháng 7 2017 lúc 20:41

Xét vế trái ta có :

\(x^4+y^4+\left(x+y\right)^4\)

= \(x^4+y^4+\left(\left(x+y\right)^2\right)^2\)

= \(x^4+y^4+\left(x^2+y^2+2xy\right)^2\)

= \(x^4+y^4+x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3\)

= \(2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)

= \(2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^2+xy+y^2\right)^2\)

=VP

Vậy đăng thức đã được chứng minh

Keo Bong
Xem chi tiết
Đinh Đức Hùng
24 tháng 7 2017 lúc 8:11

Biến đổi VT ta được :

\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)

\(=x^4-y^4=VP\) (đpcm)

Kiên-Messi-8A-Boy2k6
Xem chi tiết
Phan Long Phúc
2 tháng 3 2019 lúc 20:39

vì nếu nó không bằng nhau thì đâu cần phải cm nên :

=> nó bằng nhau

Lê Thành Đạt
Xem chi tiết
Nam Trần
Xem chi tiết
Đức Hiếu
11 tháng 6 2017 lúc 13:29

Ta có:

\(VT=2\left(x^2+xy+y^2\right)^2\)

\(=2\left[\left(x^2\right)^2+\left(xy\right)^2+\left(y^2\right)^2+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2\left[x^4+x^2y^2+y^4+2x^3y+2xy^3+2x^2y^2\right]\)

\(=2x^4+2x^2y^2+2y^4+4x^3y+4xy^3+4x^2y^2\)

\(=x^4+y^4+\left(x^4+4x^3y+6x^2y^2+4xy^3+y^2\right)\)

\(=x^4+y^4+\left(x+y\right)^4=VP\)

Vậy \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\) (đpcm)

Chúc bạn học tốt!!!

Như Khương Nguyễn
11 tháng 6 2017 lúc 14:38

Thằng hiếu đã đánh tan vế trái thì anh đây đánh tan vế trái

\(VT=x^4+y^4+\left(x+y\right)^4\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=\left(x+y\right)^4-4xy\left(x+y\right)^2+\left(2xy\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)

\(=2\left[\left(x+y\right)^4-4xy\left(x+y\right)^2+x^2y^2\right]\)

\(=2\left[\left(x+y\right)^2-xy\right]^2\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)

Ánh Tuyết
Xem chi tiết
Bùi Mạnh Khôi
22 tháng 8 2018 lúc 15:24

\(\left(x+y\right)^4+x^4+y^4\)

\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)

\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)

\(=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4y^3x+x^4+y^4\)

\(=2x^4+2y^4+6x^2y^2+4x^3y+4y^3x\)

\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2y^3x\right)\)

\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)