\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\\ =x^4-x^3y+x^3y-x^2y^2+x^2y^2-y^4\\ =\left(x^4-y^4\right)+\left(-x^3y+x^3y\right)+\left(-x^2y^2+x^2y^2\right)\\ =x^4-y^4=VP\)
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)
\(=x^4+0+0+0-y^4\)
\(=x^4-y^4=VP\left(dpcm\right)\)
\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\\ \Leftrightarrow x.x^3+x.x^2y+x.xy^2+x.y^3-y.x^3-y.x^2y-y.xy^2-y.y^3=x^4-y^4\\ \Leftrightarrow x^4+x^3y+x^2y^2+xy^3-xy^3-x^2y^2-xy^3-y^4=x^4-y^4\\ \Leftrightarrow\left(x^4-y^4\right)+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)=x^4-y^4\\ \Leftrightarrow x^4-y^4+0+0+0=x^4-y^4 \\ \Leftrightarrow x^4-y^4=x^4-y^4\left(đpcm\right)\)