\(P=\left(\dfrac{x}{4}+\dfrac{y}{2}\right)^3-3\cdot\dfrac{x}{4}\cdot\dfrac{y}{2}\cdot\left(\dfrac{x}{4}+\dfrac{y}{2}\right)\)
\(=\left(\dfrac{x+2y}{4}\right)^3-\dfrac{3xy}{8}\cdot\dfrac{x+2y}{4}\)
\(=0\)
\(P=\left(\dfrac{x}{4}+\dfrac{y}{2}\right)^3-3\cdot\dfrac{x}{4}\cdot\dfrac{y}{2}\cdot\left(\dfrac{x}{4}+\dfrac{y}{2}\right)\)
\(=\left(\dfrac{x+2y}{4}\right)^3-\dfrac{3xy}{8}\cdot\dfrac{x+2y}{4}\)
\(=0\)
1. tính
a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)
b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)
c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)
d) \(\left(\dfrac{1}{2}x-2y\right)^3\)
e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)
f) \(27x^3-8y^3\)
g) 4(2x - 3y) - 4 - (2x-3y)2
2. rút gọn
a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)
b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)
3. c/m các biểu thức sau ko phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
4. Tìm x
a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)
b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
c) \(49x^2+14x+1=0\)
d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
5. c/m biểu thức luôn dương:
a) \(A=16x^2+8x+3\)
b) \(B=y^2-5y+8\)
c) C= \(2x^2-2x+2\)
d) \(D=9x^2-6x+25y^2+10y+4\)
6. Tìm GTLN và GTNN của các biểu thức sau
a) \(M=x^2+6x-1\)
b) \(N=10y-5y^2-3\)
7. thu gọn
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
Chứng minh các đẳng thức sau :
\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
1. làm tính nhân
a,\(2x.\left(x^2-7x-3\right)\)
b,\(\left(-2x^3+\dfrac{3}{4}y^2-7xy\right).4xy^2\)
c,\(\left(-5x^3\right).\left(2x^2+3x-5\right)\)
d,\(\left(2x^2-\dfrac{1}{3}xy+y^2\right).\left(-3x^3\right)\)
e,\(\left(x^2-2x+3\right).\left(x-4\right)\)
f,\(\left(2x^3-3x-1\right).\left(5x+2\right)\)
2.tính nhanh
a,\(892^2+892.216+108^2\)
b,\(36^2+26^2-52.36\)
3.tìm x biết
a,\(7x^2-28=0\)
b,\(\dfrac{2}{3}x.\left(x^2-4\right)=0\)
c,\(2x.\left(3x-5\right)-\left(5-3x\right)=0\)
d,\(\left(2x-1\right)^2-25=0\)
4.rút gọn và tính gái trị biểu thức
M=\(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
với x=27
giải pt
a.\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)
b. \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)
Chứng minh:
\(\left(x-y\right)\)\(\left(x^3+x^2y+xy^2+y^3\right)\)\(=x^4-y^4\)
55. Chứng minh đẳng thức: \(\dfrac{\left(x-y\right)^7-x^7+y^7}{\left(x-y\right)^5-x^5+y^5}=\dfrac{7}{5}\left(x^2-xy+y^2\right)\)
Thực hiện phép tính :
a, \(\left(x^2+\dfrac{2}{5}y\right)\cdot\left(x^2-\dfrac{2}{5}y\right)\)
b,\(\left(3x-2y\right)\cdot\left(3x+2y\right)\cdot\left(9x^2+4y^2\right)\)