Cho số thực \(x\ge0\).Hãy so sánh \(\sqrt{x}\) với \(x\)
Cho số thực x>=0. Hãy so sánh sqrt(x) với x
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).
a) Ta có: \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Cho \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)( \(x>y\ge0\)). So sánh H với \(\sqrt{H}\)
Áp dụng Cô-si:
\(x+y\ge2\sqrt{xy}\)
Do đó:
\(H\le\dfrac{\sqrt{xy}}{2\sqrt{xy}-\sqrt{xy}}=1\)
Mà \(x>y\) nên dấu "=" không xảy ra
\(\Rightarrow H< 1\)
Kết hợp dữ kiện đề bài, ta được:
\(\Rightarrow0< H< 1\)
\(\Rightarrow\sqrt{H}< 1\)
Xét:
\(H-\sqrt{H}=\sqrt{H}\left(\sqrt{H}-1\right)< 0\)
\(\Rightarrow H< \sqrt{H}\)
Cho \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\) \(\left(x>y\ge0\right)\). So sánh H với\(\sqrt{H}\)
Ta có
\(x+y\ge2\sqrt{xy}\\ \Leftrightarrow x+y\ge\sqrt{xy}+\sqrt{xy}\\ \Leftrightarrow x+y-\sqrt{xy}\ge\sqrt{xy}\\ \Rightarrow\dfrac{\sqrt{xy}}{yx-\sqrt{xy}+y}\)
Có mẫu luôn lớn hơn hoặc = tử số
Bằng khi x = y = 1
\(\Rightarrow H\le\sqrt{H};bằng.khi.x=y=1\)
Với M = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\). So sánh biểu thức M với \(\sqrt{M}\) (ĐK: \(x\ge0\))
\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}< =1\)
=>M<=căn M
Ta có: A = \(\dfrac{4\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\) với \(x\ge0;x\ne4\)
Cho \(M=\dfrac{A}{B}\). So sánh \(M\) và \(\sqrt{M}\)
so sánh \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\left(x\ge0;x\ne1\right)\) với `1/3`.
Đặt \(P=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(P-\dfrac{1}{3}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=-\dfrac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=-\dfrac{\left(\sqrt{x}-1\right)^2}{x+\sqrt{x}+1}\le0;\forall x\ge0\)
\(\Rightarrow P\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=1\) ko thỏa mãn ĐKXĐ nên \(P< \dfrac{1}{3}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với \(x\ge0,x\ne25\)
Biểu thức A sau khi rút gọn là A = \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) So sánh A với 2
Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)
Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)
=> A < 2
Chứng minh rằng biểu thức \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}\le2\) với mọi số thực \(x\) (\(x\ge0\))