Tìm x
\(\left(\dfrac{2}{3}\right)^x=\dfrac{16}{81}\)
Tìm x:
\(a\)) \(\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(b\)) \(\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{27}{8}\right)^3=\dfrac{81}{16}\)
\(c\)) \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(d\)) \(\text{12 - (2x +1)}^2=-69\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}-\dfrac{2}{3}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\)
\(x=\dfrac{1}{2}+\dfrac{1}{3}\)
\(x=\dfrac{1}{5}\)
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
\(lim_{x->a}\left[\dfrac{1}{\left(x-a\right)^2}\left(x^2-8x+10+\dfrac{81}{x+2\sqrt{x-1}}-2\sqrt{x-1}\right)\right]=\dfrac{21}{16}\)
\(lim_{x->b}\left[\dfrac{4}{\left(x-b\right)^2}\left(x^2-x+2-2\sqrt{x}\right)\right]=c\)
với a,b,c là các số thực. Tìm a,b,c
Tìm x
1) \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\) 2) \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\) 3) \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
4) \(\left(\dfrac{4}{9}\right)^x=\left(\dfrac{8}{27}\right)^{10}\) 5) \(2^x=4^5.4^3\) help me !!!!
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
\(5x-9=5+3x;2^3+0,5x=1,5;\left(5x+1\right)^2=\dfrac{36}{49};\left(\dfrac{-3}{81}\right)^x=-27;2^{x-1}=16\)
Tìm x, biết:
a) \(\left(-\dfrac{1}{3}\right)^3\) .x = \(\dfrac{1}{81}\)
b) 22 . 16 >2x > 42
c) 9.27 < 3x < 243
Lời giải:
a.
$(\frac{-1}{3})^3.x=\frac{1}{81}=(\frac{-1}{3})^4$
$\Rightarrow x=(\frac{-1}{3})^4: (\frac{-1}{3})^3=\frac{-1}{3}$
b.
$2^2.16> 2^x> 4^2$
$\Rightarrow 2^2.2^4> 2^x> (2^2)^2$
$\Rightarrow 2^6> 2^x> 2^4$
$\Rightarrow 6> x> 4$
$\Rightarrow x=5$ (với điều kiện $x$ là số tự nhiên nhé)
c.
$9.27< 3^x< 243$
$3.3^3< 3^x< 3^5$
$\Rightarrow 3^4< 3^x< 3^5$
$\Rightarrow 4< x< 5$
Với $x$ là stn thì không có số nào thỏa mãn.
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
tìm x:
\(a,5^x.\left(5^2\right)^3=625\)
\(b,\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{4}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
\(c,\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(d,172x^2-7^9:98^3=2^{-3}\)
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
Tìm x ∈ N biết :
a) \(8< 2^x\le2^9.2^{-5}\)
b)\(27< 81^3:3^x< 243\)
c)\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-3}{5}\right)^2\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)