So sánh
A)-11^32 & -16^49 B)58^89 & 36^53 C)-12^37 & -19^54 D)-18^53 & -26^78
Bạn nào làm đi câu nào thì giúp mình nhé mình đang cần gấp cảm ơn
So sánh
a, 6+\(2\sqrt{2}\) và 9
b, \(\sqrt{11}-\sqrt{3}\) và 2
\(a,2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\\ \Leftrightarrow6+2\sqrt{2}< 3+6=9\\ b,\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}\\ 2^2=4=14-10\\ \left(2\sqrt{33}\right)^2=132>100=10^2\Leftrightarrow-2\sqrt{33}< -10\\ \Leftrightarrow\sqrt{11}-\sqrt{3}< 2\)
a: \(2\sqrt{2}< 3\)
nên \(6+2\sqrt{2}< 9\)
so sánh
a,\(\dfrac{14}{21}và\dfrac{60}{72}\)
b,\(\dfrac{11}{54}và\dfrac{22}{37}\)
a) `14/21=(14:7)/(21:7)=2/3=4/6`
`60/72=(60:12)/(72:12)=5/6`
Vì `4/6 <5/6`
`=> 14/21 < 60/72`
b) `22/37 = (22:2)/(37:2)= 11/(37/2)`
Vì `54 > 37/2`
`=> 11/54 < 22/37`
so sánh
a) 1/2^2+1/2^3+...1/2^2014 và 1
b)A=10^11-1/10^12-1 và B=10^10+1/10^11+1
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
1 .SO SÁNH
a,13/15 và 133/153
b, 13/15 và 1333/1555
2 . so sánh các phân số sau bằng các hợp lí nhất
a,9/11 và 13/15
b,19/15 và 15/11
c,201/301 và 199/308
d,43/87 và 37/73
Bài 2:
a: Ta có: \(\dfrac{9}{11}=1-\dfrac{2}{11}\)
\(\dfrac{13}{15}=1-\dfrac{2}{15}\)
mà \(-\dfrac{2}{11}< -\dfrac{2}{15}\)
nên \(\dfrac{9}{11}< \dfrac{13}{15}\)
b: Ta có: \(\dfrac{19}{15}=1+\dfrac{4}{15}\)
\(\dfrac{15}{11}=1+\dfrac{4}{11}\)
mà \(\dfrac{4}{15}< \dfrac{4}{11}\)
nên \(\dfrac{19}{15}< \dfrac{15}{11}\)
Bài 2:
a: Ta có: 1315=1−2151315=1−215
mà 911<1315911<1315
b: Ta có: 1511=1+4111511=1+411
mà 1915<1511
so sánh
a,1619 và 825
b,5100 và 3500
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a: 16^19=(2^4)^19=2^76
8^25=(2^3)^25=2^75
mà 76>75
nên 16^19>8^25
b: 3^500=(3^5)^100=243^100>5^100
so sánh
a)3200 và 2300
b)540
và 350\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
`3^200=(3^2)^100=9^100`.
`2^300=(2^3)^100=8^100`.
`=> 2^300 < 3^200`.
`b, 5^40=(5^4)^10=625^10.`
`3^50=(3^5)^10=243^10`.
`=> 5^40 > 3^50`.
So sánh
A=1020+9/1020-6
B=1021+5/1021+5
S o s á n h A = 2008 2009 + 2009 2010 + 2010 2011 v à B = 2008 + 2009 + 2010 2009 + 2010 + 2011
1.50. Không đặt tính , hãy so sánh
a=25.26261 và b=26.25251
b)
a = 25.26 261 = 25.(26 260 +1) = 25.10.2626 + 25 = 25.10.26.101 + 25
b = 26.25 251 = 26.(25 250 + 1) = 26.10.2525 + 26 = 26.10.25.101 + 26
Suy ra a < b
a=25.26261=25.(26260+1) = 25.10.2626+25 = 25.10.26.101+25
b=26.25251=26.(25 250+1)=26.10.2525+26=26.10.25.101+26
Vì 26>25 nên b>a
trong bài có mấy hình ảnh so sánh
a,1
b,2
c, 3