Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh_Chi_chimte
Xem chi tiết
Geminian1468
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 23:42

a: Ta có: \(A=x^2-7x+11\)

\(=x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{5}{4}\)

\(=\left(x-\dfrac{7}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{7}{2}\)

b: ta có: \(A=9x^2+6x+11\)

\(=9x^2+6x+1+10\)

\(=\left(3x+1\right)^2+10\ge10\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)

Winter
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:43

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:44

\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 11:25

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2021 lúc 20:53

Với mọi số thực không âm a, b ta luôn có:

\(\left(a-b\right)^2\ge0\Leftrightarrow2ab\le a^2+b^2\)

\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng:

a.

\(\sqrt{x-5}+\sqrt{23-x}\le\sqrt{2\left(x-5+23-x\right)}=6\)

Dấu "=" xảy ra khi \(x=14\)

b.

\(\sqrt{x-3}+\sqrt{19-x}\le\sqrt{2\left(x-3+19-x\right)}=4\sqrt{2}\)

Dấu "=" xảy ra khi \(x=11\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2019 lúc 18:30

Nguyễn Phú Thành
Xem chi tiết
hưng phúc
21 tháng 9 2021 lúc 15:44

a. 9x2 - 6x - 3 = 0

<=> 3(3x2 - 2x - 1) = 0

<=> 3(3x2 - 3x + x - 1) = 0

<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)

<=> 3(3x + 1)(x - 1) = 0

<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

b. (2x + 1)2 - 4(x + 2)2 = 9

<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)

<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9

<=> -3(4x + 5) = 9

<=> 4x + 5 = -3

<=> 5 + 3 = -4x

<=> -4x = 8

<=> -x = 2

<=> x = -2

Lấp La Lấp Lánh
21 tháng 9 2021 lúc 15:45

a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2-4=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)

H Phương Nguyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

giúp mik với
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 21:20

a: \(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

c: \(\Leftrightarrow\left(x-1\right)\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

ILoveMath
26 tháng 10 2021 lúc 21:24

a) \(x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

c) \(9x^2\left(x-1\right)=x-1\\ \Leftrightarrow\left(9x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(3x+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

d) \(x^2-4=\left(x-2\right)^2\\ \Leftrightarrow\left(x-2\right)\left(x+2-x+2\right)=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x=2\)

e) \(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

f) \(x^3-0,36=0\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

g) \(\Leftrightarrow\left(5x-1\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2018\end{matrix}\right.\)

h) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

 

Trần Hương Trà
Xem chi tiết
Nguyễn Minh Anh
18 tháng 8 2021 lúc 18:50

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 22:06

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

BBBT
Xem chi tiết
Ngô Hải Nam
21 tháng 6 2023 lúc 21:35

a)

`4(x-2)^2 =4`

`<=>(x-2)^2 =1`

`<=>x-2=1` hoặc `x-2=-1`

`<=>x=3` hoặc `x=1`

b)

`5(x^2 -6x+9)=5`

`<=>(x-3)^2 =1`

`<=>x-3=1`hoặc `x-3=-1`

`<=>x=4` hoặc `x=2`

c)

`4x^2 +4x+1=0`

`<=>(2x+1)^2 =0`

`<=>2x+1=0`

`<=>x=-1/2`

d)

`9x^2 +6x+1=2`

`<=>(3x+1)^2 =2`

\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)