Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Duy
Xem chi tiết
Lê Song Phương
3 tháng 10 2023 lúc 21:11

 Đặt \(a+b=x,b+c=y,c+a=z\) với \(x,y,z>0\). Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=2\)

 \(\Rightarrow\dfrac{1}{x+1}=2-\dfrac{1}{y+1}-\dfrac{1}{z+1}\) \(=1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\) \(=\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

 \(\Rightarrow\dfrac{1}{x+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}\)

 Tương tự, ta có: \(\dfrac{1}{y+1}\ge2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}\) và \(\dfrac{1}{z+1}\ge2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

 Nhân theo vế 3 BĐT vừa tìm được, ta có:

  \(\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}.2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}.2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8.\dfrac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\dfrac{1}{8}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{4}\)

Vậy GTLN của \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là \(\dfrac{1}{8}\), xảy ra khi \(a=b=c=\dfrac{1}{4}\)

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2020 lúc 17:43

Chắc là bạn ghi nhầm mẫu số cuối cùng

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)

Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)

Cộng vế với vế:

\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)

\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Hi Mn
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Big City Boy
Xem chi tiết
Rin Huỳnh
15 tháng 1 2022 lúc 7:30

Áp dụng BĐT Bunyakovsky, ta có:

\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy, ta có:

\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)

Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy GTNN của A là 1 (khi a = b = c = 1).

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 20:25

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

Trương pHÁT
Xem chi tiết