Cm
2y-y2+x+x2-5 < 0 vs mọi x,y thuộc R
CM x^2+y^@-2x-2y+3>0,với mọi x,y thuộc R
\(x^2+y^2-2x-2y+3\)
\(=x^2-2.x.1+1^2+y^2-2.y.1+1^2+1\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+1>0+0+0=0\)
giải hệ pt: x3+x2+y2-x2y-xy-y=0
\(\sqrt{x}+\sqrt{y-1}=\sqrt{2y-3x-4}\)
nhờ mọi ngưòi giúp mk vs ạ
chúc mọi người một năm mới thành công trong cuộc sống
CM rằng
a) x2+2xy+y2+1>0 với mọi x
b) x2+y2+1≥xy+x+y
c) x2-x+1>0 với mọi số thực x
em mong mọi người giúp đỡ em cảm ơn ạ
a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ 1 , giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x 2 + y 2 + 4 x + 6 y + 13 - m = 0 thuộc tập nào sau đây?
A. [8;10]
B. [5;7]
C. [1;4]
D. [-3;0]
Đáp án A
Ta có, giả thiết log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính R 1 = 2
Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m là đường tròn tâm I(-2;-3); R 2 = m
Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 ( 2 x + 2 y + 5 ) ≥ 1 giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x2 + y2 + 4x + 6y + 13 - m = 0 thuộc tập nào sau đây?
Đáp án A
Ta có, giả thiết
là miền trong đường tròn tâm I(1;1) bán kính R1 = 2
Và
Q= x+y/2x-2y - x-y/2x+2y + x2+y2/x2- y
Rút gon biểu thức Q
mọi người ơi mik đang cần gấp ạ giúp mik vs:(((
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
chứng minh
x2 -2xy + y2 + 1 = 0 vs mọi x,y thuộc R
x - x2 -1 < 0 vs mọi x thuộc R
HELP ME MAI CÓ TIẾT RỒI
\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!
\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)
Rút gọn:
a) x2 . (x + 4) - (x2 + 1) . (x2 - 1)
b) (y - 3) . (y + 3) . (y2 + 9) - (y2 + 2) . (y2 - 2)
c) (2 + 2y)2 + (x - 2y)2 - 2. (x + 2). (x - 2)
d) (a + b - c)2 - (a - c)2 - 2ab + 2bc
Cho x>y>2
a.chứng minh x+y>4, xy>4
b. x2 -xy>0, y2 -2y>0, xy-y2>0
a: x>2
y>2
=>x+y>2+2=4
x>y>2
=>xy>2^2=4
b: x^2-xy=x(x-y)
x-y>0; x>0
=>x(x-y)>0
=>x^2-xy>0
y>2
=>y-2>0
=>y(y-2)>0
=>y^2-2y>0
x>y và y>2
=>y>0 và x-y>0
=>y(x-y)>0
=>xy-y^2>0