Tìm x
\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}.\left(6x+1\right)\)
tìm x
\(\dfrac{3-x}{5-x}=\dfrac{6}{11}\) \(\left(1\dfrac{1}{3}-25\%.x-\dfrac{5}{12}\right)-2x=1,6:\dfrac{3}{5}\)
\(\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)-\dfrac{1}{3}.\left(2x-3\right)=x\)
\(2.\left(\dfrac{1}{2}-x\right)-3\left(x-\dfrac{1}{3}\right)=\dfrac{7}{2}\)
a: =>11(x-3)=6(x-5)
=>11x-33=6x-30
=>5x=3
=>x=3/5
b: =>(4/3-1/4x-5/12)-2x=8/5*5/3=8/3
=>-9/4x+11/12=8/3
=>-9/4x=32/12-11/12=21/12=7/4
=>x=-7/9
c: =>1/2x-1/3-2/3x-1=x
=>-1/6x-4/3=x
=>-7/6x=4/3
=>x=-4/3:7/6=-4/3*6/7=-24/21=-8/7
d: =>1-2x-3x+1=7/2
=>-5x=3/2
=>x=-3/10
Tìm x :
a) \(\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|=4x\)
b) \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+..+\left|x+\dfrac{1}{110}\right|=11x\)
Lời giải:
a) Hiển nhiên vế trái $\geq 0$ do tính chất của trị tuyệt đối.
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0$. Đến đây ta có thể phá bỏ dấu trị tuyệt đối
$|x+\frac{11}{17}|+|x+\frac{2}{17}|+|x+\frac{4}{17}|=4x$
$x+\frac{11}{17}+x+\frac{2}{17}+x+\frac{4}{17}=4x$
$3x+1=4x$
$x=1$
b) Hiển nhiên vế trái $\geq 0$ nên $11x\geq 0\Rightarrow x\geq 0$
Khi đó:
$|x+\frac{1}{2}|+|x+\frac{1}{6}|+|x+\frac{1}{12}|+...+|x+\frac{1}{110}|=x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}$
$=10x+(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110})$
$=10x+(1-\frac{1}{11})=10x+\frac{10}{11}=11x$
$\Rightarrow x=\frac{10}{11}$
trời đất dung hoa vạn vật sinh sôi con mẹ mày lôi thôi đầu xanh mỏ đỏ gặp cỏ thay cơm đầu tóc bờm sờm khạc đờm tung tóe mà TAO ĐỊT CON MẸ MÀY NHƯ LỒN TRAU LỒN CHÓ LỒN BÓ XI MĂNG LỒN CHẰNG MẠNG NHỆN MÀ LỒN BẸN LÁ KHOÁI LỒN KHAI LÁ MIT LỒN ĐÍT LỒN TƠM LỒN TƠM LỒN ĐẬM LỒN GIA MAI LỒN ỈA CHẢY LỒN NHẨY HIPHOP LỒN LÔ XỐP LỒN HÀNG HIỆU LỒN HÀNG TRIỆU CON SÚC VẬT MÀ NÓ ĐÂM VÀO CÁI CON ĐĨ MẸ MÀY TỪ TRÊN CAO MÀ LAO ĐẦU XUỐNG ĐẤT ĐỊT LẤT PHẤT NHƯ MƯA RƠI
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Bài 2. Tìm x biết
\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
a) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{8}{12}\)
\(\Leftrightarrow\dfrac{2}{5}+x=\dfrac{11-8}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{5}{20}-\dfrac{8}{20}\)
\(\Leftrightarrow x=\dfrac{-3}{20}\)
Vậy x= \(\dfrac{-3}{20}\)
b) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{8-15}{20}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Leftrightarrow x=\dfrac{1}{4}.\dfrac{-20}{7}\)
\(\Leftrightarrow x=\dfrac{-5}{7}\)
Vậy x= \(\dfrac{-5}{7}\)
a) Ta có: \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow x+\dfrac{2}{5}=\dfrac{11}{12}-\dfrac{2}{3}=\dfrac{11}{12}-\dfrac{8}{12}=\dfrac{1}{4}\)
hay \(x=\dfrac{1}{4}-\dfrac{2}{5}=\dfrac{5}{20}-\dfrac{8}{20}=\dfrac{-3}{20}\)
b) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{-7}{20}\)
hay \(x=\dfrac{1}{4}:\dfrac{-7}{20}=\dfrac{1}{4}\cdot\dfrac{-20}{7}=\dfrac{-5}{7}\)
Tìm x biết: a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\) b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\) d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}.\dfrac{10}{6}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
tìm x:
\(a,5^x.\left(5^2\right)^3=625\)
\(b,\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{4}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
\(c,\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(d,172x^2-7^9:98^3=2^{-3}\)
Cho \(x=\dfrac{3+\sqrt{5}}{2}\). Tình \(P=\left(10x^2-30x+11\right)^2+\dfrac{\left(2x^2-6x+3\right)^{10}}{x^5-3x^4+x^3-1}\)
\(x=\dfrac{3+\sqrt{5}}{2}\Rightarrow2x-3=\sqrt{5}\Rightarrow4x^2-12x+9=5\)
\(\Rightarrow4x^2-12x+4=0\Rightarrow x^2-3x+1=0\)
\(\Rightarrow P=\left[10\left(x^2-3x+1\right)+1\right]^2+\dfrac{\left[2\left(x^2-3x+1\right)+1\right]^{10}}{x^3\left(x^2-3x+1\right)-1}=1^2+\dfrac{1^2}{0-1}=...\)
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
Rút gọn:
a) \(\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\dfrac{6x^2y^2}{8xy^5}\)
c) \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}\)
d) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
e) \(\dfrac{x^2-2x+1}{x^2-1}\)
f) \(\dfrac{8x-4}{8x^3-1}\)
g) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
k) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
a: \(=\dfrac{x-z}{2}\)
b: \(=\dfrac{3x}{4y^3}\)