Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Lộc
Xem chi tiết
tranthuylinh
Xem chi tiết
Khinh Yên
23 tháng 6 2021 lúc 22:07

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

Khinh Yên
23 tháng 6 2021 lúc 22:04

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

Ngô Bá Hùng
23 tháng 6 2021 lúc 22:10

1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

2. để đi qua điểm (1;-4),

\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)

3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)

tọa độ điểm cố định là nghiệm của hpt

\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

đ cđịnh M(-1;4)

4. \(y=\left(m-1\right)x+m+3\)

+ Khi x=0, y=m+3

+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)

Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

 

Etermintrude💫
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 11:00

ĐKXĐ: \(m\ne-\dfrac{1}{3}\)

a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì

Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow3m+1=1\)

\(\Leftrightarrow3m=0\)

hay m=0(thỏa ĐK)

b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy: F(2;1)

Để (P) đi qua điểm F(2;1) thì 

Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot4=1\)

\(\Leftrightarrow3m+1=\dfrac{1}{4}\)

\(\Leftrightarrow3m=-\dfrac{3}{4}\)

\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)

bí ẩn
Xem chi tiết
Cô Bé Bạch Dương
Xem chi tiết
Nguyen Thi Trinh
20 tháng 4 2017 lúc 20:53

1. Để đồ thị của hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1 thì:

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

Vậy để 2 đồ thị trên song song với nhau thì m=-1 và m\(\ne\)-2

2. Vì đồ thị đi qua điểm (1;-4) nên ta có:

-4=m-1+m+3

\(\Leftrightarrow\) 2m=-6

\(\Leftrightarrow m=-3\)

Vậy để đồ thị đi qua điểm (1;-4) thì m=-3

Nguyễn Minh Ngọc
29 tháng 9 2017 lúc 17:37

c

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trường Trần
Xem chi tiết
An ngọc lâm
5 tháng 7 2020 lúc 22:14

a) y=(m-1)x+m+3   (d1)  (a=m-1;b=m+3)

y=-2x+1  (d2)   (a' =-2;b' =1)

vì hàm số (d1) song song với hàm số  (d2) nên

\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)

vậy với m= -1 thì hàm số  (d1)  song song với hàm số  (d2) 

b) vì hàm số (d1) đi qua điểm  (1;-4) nên 

x=1 ; y= -4

thay vào (d1) ta có 

-4=m-1+m+3        (mình làm tắt ko nhân với 1 nha)

-4=2m+2

-2=2m

m=-1

Khách vãng lai đã xóa
Trần Hoàng Anh
Xem chi tiết
Nguyễn Đức Trí
5 tháng 9 2023 lúc 22:14

1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)

Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi

\(m.\left(-1\right)+1=-1\)

\(\Leftrightarrow-m=-2\)

\(\Leftrightarrow m=2\)

Vậy hàm số \(\left(1\right):y=2x+1\)

Bạn tự vẽ đồ thị nhé!

2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)

Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi

\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài

3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:

\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow0m=1\)

\(\Leftrightarrow m\in\varnothing\)

Vậy không có giá trị nào của m để thỏa mãn đề bài,

Nguyễn Bảo Long
5 tháng 9 2023 lúc 21:19

Đáp án:

1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy

Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.

Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:

[Image of the graph of y=-2x+1]

2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =

Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.

3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5

Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:

 

d=|m|

Do đó, ta có d=2552=2.

Từ đó, ta có m=2.

Kết luận:

Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2. Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2. Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.

Lưu ý:

Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =. Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

chúc bạn học tốt

Cảm ơn em đã tham gia hỏi đáp olm.

Trong câu trả lời của Nguyễn Bảo Long là câu coppy chat gpt.

Lần này cô nhắc nhở, lần sau cô xử phạt 

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
9 tháng 5 2017 lúc 18:13

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

Nguyen Thuy Hoa
31 tháng 5 2017 lúc 9:40

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

Lê Nhật Phương
31 tháng 12 2017 lúc 14:43

ĐK: m - 3 # 0 <=> m # 0

a) * Hàm số đồng biến khi hệ số a = m - 3 > 0 <=> m > 3

Vậy với m > 3 thì hàm số

y=(m−3)xy=(m−3)x đồng biến.

* Hàm số nghịch biến khi hệ số a=m−3<0⇔m<3a=m−3<0⇔m<3

Vậy với m < 3 thì hàm số y = (m − 3) xy = (m − 3) x nghịch biến.

b) Đồ thị của hàm số y = (m − 3) xy = (m − 3) x đi qua điểm A(1;2) nên tọa độ điểm A nghiệm đúng phương trình hàm số.

Ta có: 2 = (m − 3) 1 ⇔ 2 = m − 3 ⇔ m = 52 = (m − 3) 1 ⇔ 2 = m − 3 ⇔ m = 5.

Giá trị m = 5 thỏa mãn điều kiện bài toán .

Vậy với m = 5 thì đồ thị hàm số y = (m − 3) xy =(m − 3) x đi qua điểm A(1;2)

c) Đồ thị của hàm số y = (m − 3) xy = (m − 3) x đi qua điểm B(1;-2) nên tọa độ điểm B nghiệm đúng phương trình hàm số.

Ta có : −2 = (m − 3) 1 ⇔ −2 = m − 3 ⇔ m = 1 − 2 = (m − 3) 1 ⇔ − 2 = m − 3 ⇔ m = 1

Giá trị m = 1 thỏa mãn điều kiện bài toán .

Vậy với m = 1 thì đồ thị hàm số y = (m − 3) xy = (m − 3) x đi qua điểm B(1;-2).

d) Khi m = 5 thì ta có hàm số: y = 2x

Khi m = 1 thì ta có hàm số: y = -2x

*Vẽ đồ thị của hàm số y = 2x

Cho x = 0 thì y = 0. Ta có: O(0;0)

Cho x = 1 thì y = 2. Ta có: A(1;2)

Đường thẳng OA là đồ thị hàm số y = 2x.

*Vẽ đồ thị của hàm số

Cho x = 0 thì y = 0. Ta có : O(0;0)

Cho x = 1 thì y = -2 . Ta có : B(1;-2)

Đường thẳng OB là đồ thị của hàm số y = -2x.



Niki Rika
Xem chi tiết
ERROR
10 tháng 5 2022 lúc 5:55

refer

Minh Hồng
10 tháng 5 2022 lúc 9:36

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)