Những câu hỏi liên quan
Trần Thị Trúc Linh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 12:57

Bunhiacopxki:

\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)

\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}\)

Tương tự:

\(\dfrac{1}{b^2+c+d+a}\le\dfrac{1+c+d+a}{16}\) ; \(\dfrac{1}{c^2+d+a+b}\le\dfrac{1+d+a+b}{16}\)

\(\dfrac{1}{d^2+a+b+c}\le\dfrac{1+a+b+c}{16}\)

Cộng vế:

\(P\le\dfrac{4+3\left(a+b+c+d\right)}{16}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d=1\)

Bình luận (1)
Linh Đỗ
Xem chi tiết
Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Bình luận (1)
Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

Bình luận (1)
Đang Quân Anh
Xem chi tiết
HaNa
25 tháng 5 2023 lúc 11:40

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 11:36

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

Bình luận (0)
チュオン コンダ ンダ
Xem chi tiết
nguyen thi vang
7 tháng 1 2021 lúc 12:23

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)

<=>abc-acd+bd2-b2d=0

<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd

Vậy abcd =(ac)(bd)=(ac)2

Bình luận (0)
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 8 2021 lúc 20:48

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

Bình luận (1)
Nguyễn Việt Lâm
1 tháng 9 2021 lúc 15:30

Chia 2 vế cho \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\) BĐT trở thành:

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}+\dfrac{1}{b^4\left(a+1\right)\left(c+1\right)}+\dfrac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\dfrac{3}{4}\)

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\) \(\Rightarrow xyz=1\)

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}=\dfrac{x^4}{\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)}=\dfrac{x^4yz}{\left(y+1\right)\left(z+1\right)}=\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}\)

Do đó BĐT trở thành:

\(\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}+\dfrac{y^3}{\left(x+1\right)\left(z+1\right)}+\dfrac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\dfrac{3}{4}\)

Một bài toán quen thuộc

Bình luận (0)
Phạm Kim Oanh
Xem chi tiết
Đỗ Tuệ Lâm
6 tháng 3 2022 lúc 15:19

ca này để thầy lâm ròi:<

Bình luận (7)
Nguyễn Việt Lâm
6 tháng 3 2022 lúc 23:16

\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)

\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}=\dfrac{5-a}{16}\)

Tương tự: \(\dfrac{1}{b^2+c+d+a}\le\dfrac{5-b}{16}\) ...

Cộng vế:

\(P\le\dfrac{20-\left(a+b+c+d\right)}{16}=1\)

Dấu "=" xảy ra khi \(a=b=c=d=1\)

Bình luận (0)
hoàng bắc nguyệt
Xem chi tiết