( 1- \(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\) -1) . rút gọn
Rút gọn biểu thức :
\((5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}):2\sqrt{5}\) và \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5
`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`
`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`
`=(5/2*sqrt5):2/5`
`=25/4sqrt5`
`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`
`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`
`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`
`=12sqrt3-16/sqrt3`
Bài 1: Rút gọn biểu thức:
a) \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}+\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}\right)\)
b) \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
c) \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
d) \(\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{3}}+\sqrt{\dfrac{1}{12}}\)
Bài 2: Giải các phương trình sau:
a) \(x^2+4x+5=2\sqrt{2x+3}\)
b) \(x^2+9x+20=2\sqrt{3x+10}\)
c) \(x^2+7x+14=2\sqrt{x+4}\)
d) \(4\sqrt{x+1}=x^2-5x+14\)
e) \(\sqrt{6-x}=3x-4\)
f) \(\sqrt{5x-9}=9-2x\)
Mọi người làm ơn giúp mình với. Mình đang cần gấp ạ. Cảm ơn mọi người rất nhiều
Bài 1:
a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)
\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)
\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)
\(=\dfrac{5}{2}\sqrt{5}\)
c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)
\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Bài 2:
e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)
Ta có: \(\sqrt{6-x}=3x-4\)
\(\Leftrightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow9x^2-24x+16+6-x=0\)
\(\Leftrightarrow9x^2-25x+22=0\)
\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)
Vậy: Phương trình vô nghiệm
Rút gọn biểu thức
\(A=\dfrac{1+\sqrt{5}}{1-\sqrt{5}}-\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\)
\(A=\dfrac{\left(1+\sqrt{5}\right)^2-\left(1-\sqrt{5}\right)^2}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}=\dfrac{6+2\sqrt{5}-6+2\sqrt{5}}{1-5}=\dfrac{4\sqrt{5}}{-4}=-\sqrt{5}\)
Rút gọn: ( 2,5 Điểm )
A= \(\dfrac{\sqrt{6+2\sqrt{5}}}{\sqrt{5}+1}\)+ \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
B= \(\dfrac{3}{\sqrt{5}-2}\)+ \(\dfrac{4}{\sqrt{6}+\sqrt{2}}\)+ \(\dfrac{1}{\sqrt{6}+\sqrt{5}}\)
C = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
D= \(\dfrac{1}{2-\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
E = \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
F = \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
a: \(E=1+1=2\)
b: \(=6+3\sqrt{5}+\sqrt{6}-\sqrt{2}+\sqrt{6}-\sqrt{5}\)
\(=6+2\sqrt{6}-\sqrt{2}+2\sqrt{5}\)
d: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
Rút gọn
\(A=\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+....+\dfrac{1}{\sqrt{n-1}-\sqrt{n}}\) (n thuộc N, n>=2)
Câu 3: Rút gọn biểu thức sau:
a. \(\dfrac{1}{\sqrt{5}-1}+\dfrac{1}{1+\sqrt{5}}\)
b. \(\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{2}{\sqrt{5}+\sqrt{3}}-\dfrac{3-\sqrt{15}}{\sqrt{5}-\sqrt{3}}\)
\(a,=\dfrac{\sqrt{5}+1+\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)^2}+\left|2-\sqrt{5}\right|=3-\sqrt{5}+\sqrt{5}-2=1\\ c,=\dfrac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}-\dfrac{-\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=\sqrt{5}-\sqrt{3}+\sqrt{3}=\sqrt{5}\)
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{5}-2}{5+2\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
\(b.\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(c.\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+3}\)
b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)
\(=\dfrac{3-\sqrt{3}}{3}\)
Rút gọn: \(\left(2+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right).\left(2-\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(\left(2+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\cdot\left(2-\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\\ =\left(2+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\cdot\left(2-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\\ =\left(2+\sqrt{5}\right)\cdot\left(2-\sqrt{5}\right)\\ =2^2-\sqrt{5}^2=4-5=-1\)
Ta có: \(\left(2+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\cdot\left(2-\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(=\left(2+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\cdot\left(2-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\)
\(=\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)\)
=4-5=-1
* Rút gọn biểu thức
c.\(\dfrac{1}{2\sqrt{2}}-\dfrac{3}{2}\sqrt{4,5}+\dfrac{2}{5}\sqrt{50}\)
d.\(\dfrac{4}{3+\sqrt{5}}-\dfrac{8}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}\)
`c)1/(2sqrt2)-3/2sqrt{4,5}+2/5sqrt{50}`
`=1/(2sqrt2)-3/2sqrt{9/2}+2/5sqrt{25.2}`
`=1/(2sqrt2)-9/(2sqrt2)+2sqrt2`
`=2sqrt2-8/(2sqrt2)`
`=2sqrt2-sqrt2=sqrt2`
`d)4/(3+sqrt5)-8/(1+sqrt5)+15/sqrt5`
`=(4(3-sqrt5))/(9-5)-(8(sqrt5-1))/(5-1)+3sqrt5`
`=3-sqrt5-2(sqrt5-1)+3sqrt5`
`=3+3sqrt5-3sqrt5+2=5`
B1. ko sử dụng máy tính, rút gọn
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B2.
\(G=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
so sánh G với 1
B3. giải pt
\(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
Bài 1:
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
Bài 2:
Ta có: G-1
\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ
hay \(G\le1\)