Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 8 2021 lúc 21:57

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

Rin Huỳnh
30 tháng 8 2021 lúc 21:54

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

Rin Huỳnh
30 tháng 8 2021 lúc 21:56

b) B = -(x+4)^2 + 21 <= 21

--> B lớn nhất bằng 21

<=> x = -4

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Đan Trường 5
Xem chi tiết
Khánh Ngọc
1 tháng 9 2020 lúc 13:22

\(A=15-8x-x^2=-\left(x+4\right)^2+31\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)

Vậy maxA = 31 <=> x = - 4

\(B=4x-x^2+2=-\left(x-2\right)^2+6\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy maxB = 6 <=> x = 2

Khách vãng lai đã xóa
Huyen Trang
1 tháng 9 2020 lúc 14:15

a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)

\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)

b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)

\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

c) Trang nghĩ nên sửa đề nhé:

\(C=-x^2-y^2+4x+4y+2\)

\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)

\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2020 lúc 14:39

A = 15 - 8x - x2

= -( x2 + 8x + 16 ) + 31

= -( x + 4 )2 + 31 

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 31 ≤ 31

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxA = 31 <=> x = -4

B = 4x - x2 + 2

= -( x2 - 4x + 4 ) + 6

= -( x - 2 )2 + 6

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 6 ≤ 6

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxB = 6 <=> x = 2

C = -x2 - y2 + 4x + 4y + 2 ( -x2 mới ra :v )

= -( x2 - 4x + 4 ) - ( y2 - 4y + 4 ) + 10

= -( x - 2 )2 - ( y - 2 )2 + 10

\(\hept{\begin{cases}-\left(x-2\right)^2\le0\forall x\\-\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

=> MaxC = 10 <=> x = y = 2

Khách vãng lai đã xóa
Đen xjnh géi
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 10:08

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

_Halcyon_:/°ಠಿ
2 tháng 6 2021 lúc 10:12

A= x2 - 4x +1

   = x2 - 4x + 4 - 3

   = (x-2)2 -3

Ta có (x-2)2 ≥ 0 ∀ x

    ⇒ (x-2)2 -3 ≥ -3 ∀ x

Vậy AMin= -3 tại x=2

B= 4x2+4x+11

  = 4x2+4x+1+10

  = (2x+1)2+10

Ta có (2x+1)2 ≥ 0 ∀ x

     ⇒ (2x+1)2+10 ≥ 10 ∀ x

Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)

C=(x-1)(x+3)(x+2)(x+6)

  = (x-1)(x+6)(x+3)(x+2)

  = (x2+5x-6) (x2+5x+6)

  = (x2+5x)2 -36

Ta có (x2+5x)≥ 0 ∀ x
  ⇒ (x2+5x)2 -36 ≥ -36 ∀ x

Vậy CMin=-36 tại x=0 hoặc x= -5

蝴蝶石蒜
Xem chi tiết
Akai Haruma
30 tháng 5 2021 lúc 17:39

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

Akai Haruma
30 tháng 5 2021 lúc 17:42

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

.........
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:22

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

Thuongphan
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2020 lúc 22:09

*Tìm giá trị nhỏ nhất

a) \(A=x^2-4x+1\)

Ta có: \(A=x^2-4x+1\)

\(=x^2-4x+4-5=\left(x-2\right)^2-5\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-5\ge-5\forall x\)

Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-4x+1\) là -5 khi x=2

b) \(B=4x^2+4x+11\)

Ta có: \(B=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1+10=\left(2x+1\right)^2+10\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)

Dấu '=' xảy ra khi \(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(B=4x^2+4x+11\) là 10 khi \(x=\frac{-1}{2}\)

*Tìm giá trị lớn nhất

e) \(E=5-8x-x^2\)

Ta có: \(E=5-8x-x^2\)

\(=-\left(-5+8x+x^2\right)=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\)

Ta có: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+4\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi \(\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy: Giá trị lớn nhất của biểu thức \(E=5-8x-x^2\) là 21 khi x=-4

f) \(F=4x-x^2+1\)

Ta có: \(F=4x-x^2+1\)

\(=-\left(-4x+x^2-1\right)\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị lớn nhất của biểu thức \(F=4x-x^2+1\) là 5 khi x=2

Khách vãng lai đã xóa