Những câu hỏi liên quan
Tô Hoài Dung
Xem chi tiết
Thiên An
19 tháng 5 2017 lúc 8:17

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

Bình luận (0)
Kiều Vũ Minh Đức
Xem chi tiết
Phạm Lan Hương
8 tháng 12 2019 lúc 13:33

ta có \(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}+\sqrt{\left(\sqrt{x-2}-1\right)^2}\)

\(=\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\)

Vì \(x\ge2\Rightarrow\sqrt{x-2}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}+1\ge1\\\sqrt{x-2}-1\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|\sqrt{x-2}+1\right|\ge1\\\left|\sqrt{x-2}-1\right|\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\ge2\)

Hay A\(\ge2\) Dấu = xảy ra khi x=2

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Huỳnh Kim Nhật Thanh
Xem chi tiết
Trần Tuấn Trọng
19 tháng 8 2017 lúc 10:02

a) Ta có :  \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)

ko âm nên áp dụng bđt \(a^2\)+\(b^2\)\(\ge\)2ab

 \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)+\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)\(\ge\)\(2\left(\sqrt[4]{\left(x^2+x+1\right)\left(x^2-x+1\right)}\right)\)

\(\Leftrightarrow\)\(\sqrt{x^2+x+1}\)+\(\sqrt{x^2-x+1}\)\(\ge\)\(2\left(\sqrt[4]{x^4+x+1}\right)\)\(\ge\)\(2\)\(\forall x\)

Bình luận (0)
Tô Hoài Dung
Xem chi tiết
Thắng Nguyễn
13 tháng 10 2016 lúc 18:17

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

Bình luận (0)
minh anh minh anh
13 tháng 10 2016 lúc 15:21

P OI cai nay dung bat dang thuc co si do

Bình luận (0)
Tô Hoài Dung
13 tháng 10 2016 lúc 18:06

k biết làm mà!! )))

Bình luận (0)
Bao Nguyen Trong
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Akai Haruma
18 tháng 1 2020 lúc 23:43

Bạn có thể tham khảo lời giải tại đây:

Câu hỏi của Toán Chuyên Học - Toán lớp 9 | Học trực tuyến

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 16:11

Do \(-1\le x\le1\Rightarrow2-x^2>0\)

BĐT tương đương:

\(\Leftrightarrow2+2\sqrt{1-x^2}\ge\left(2-x^2\right)^2\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(\Leftrightarrow2+2t\ge\left(1+t^2\right)^2\)

\(\Leftrightarrow t^4+2t^2-2t-1\le0\)

\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2+3t+1\right)\le0\) (luôn đúng \(\forall t\in\left[0;1\right]\))

Dấu "=" xảy ra khi \(t=1\) hay \(x=0\)

Bình luận (0)
Bình Minh Trần
Xem chi tiết
Girl
13 tháng 10 2018 lúc 19:38

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

Bình luận (0)
Nguyễn Bạch Gia Chí
Xem chi tiết
HT2k02
6 tháng 4 2021 lúc 22:23

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)

Bình luận (2)