áp dụng bất đẳng thức mincopxki :
ta có : \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\ge\sqrt{\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)^2+\left(1+1\right)^2}\ge2\)
dấu bằng xảy ra khi \(\sqrt{x^2+x}+\sqrt{x^2-x}=0\Leftrightarrow x=0\)
áp dụng bất đẳng thức mincopxki :
ta có : \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\ge\sqrt{\left(\sqrt{x^2+x}+\sqrt{x^2-x}\right)^2+\left(1+1\right)^2}\ge2\)
dấu bằng xảy ra khi \(\sqrt{x^2+x}+\sqrt{x^2-x}=0\Leftrightarrow x=0\)
Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
Cho 3 số thực dương x, y, z thỏa mãn \(x^3+y^3+z^3=1\). CMR:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
giải bpt: \(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\ge2\)
a) Cho \(x\ge2\). GTNN của hàm số \(y=\dfrac{\sqrt{x-2}}{x}\)
b) GTNN của biểu thức \(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}\) với x>1
cho x,y,z> 0 thỏa mãn \(x^3+y^3+z^3=1\)
Cmr: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
\(x^2-6x+2\ge2\left(2-x\right)\sqrt{2x-1}\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
a) Giải phương trình: \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
b) Cho \(0< x< y\le3\) và \(2xy\le3x+y\forall x,y\in R\). Chứng minh rằng: \(x^2+y^2\le10\)
giải các bpt sau:
a)\(\left(x+2\right)\sqrt{x+3}.\sqrt{x+4}\le0\)
b)\(x+1\ge2\sqrt{x^2-1}\)
c) \(\sqrt{3x^2+1}< \sqrt{3}.\left(x-2\right)\)
mọi người giúp em với ạ