Tìm GTNN của biểu thức sau: B=(x-2y)2+y2+2x+6y+2046
Bài 1) a) (2x+3y)2
b) (25x2-10x+1)
c) (x2-2y)2
d) 16x2-9y2
Bài 2) Tìm GTNN của biểu thức
D= x2+2y2-2xy-6y+2x+2020
Q= 2x2-4xy+y2-4x+6y+10
Tìm GTNN của biểu thức sau:
2x2 + 2y2 + 2xy - 6y + 21
2x2 + 2y2 + 2xy - 6y + 21
= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15
= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15
= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)
Vậy GTNN là 15 đạt được khi x = - 1, y = 2
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
A.Tìm GTNN của biểu thức A=x^4-2x^2y+2x^2+3y^2-6y+2029
B.Tìm GTNN của A=3x^2-8x+6/x^2-2x+1
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
tìm GTNN của biểu thức
E=x2+y2-x-2y+5
F=5x2-10x+3y2-6y+13
Tìm GTNN của các biểu thức sau:
a. A= 2a2 + 3ab + b22
b. x2 - 4x + y2 - 6y + 1
c. x2 - 4xy + 5y2 -2y + 5
a, xem lại đề
\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy ...
\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy ...
a,
b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12
Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3
Vậy ...
c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4
Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1
Vậy ...
\(\sqrt{x^2-6xy+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
Tìm GTNN của biểu thức trên
Tìm GTNN của biểu thức :
\(2x^2+2y^2-2xy-6y+21\)
\(2x^2+2y^2-2xy-6y+21\)
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12y+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)
\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
Vậy GTNN là 30
Cho mk sủa lại tí :
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15