Những câu hỏi liên quan
missing you =
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 10:06

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

Bình luận (2)
missing you =
28 tháng 6 2021 lúc 10:11

em cũng nghĩ thế mới dùng đc BDT AM-GM 3 số đúng ko thầy :)

Bình luận (1)
dia fic
Xem chi tiết
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:46

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:49

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 13:57

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
michelle holder
Xem chi tiết
THÁNH TOÁN
8 tháng 5 2017 lúc 22:15

câu 2 này ms làm tức thì nà

đầu tiên t c/m câu phụ \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\le\dfrac{3\sqrt{3}}{2}\)

đặt P =VT ta có \(P\le\left|P\right|=\sqrt{P^2}\)

vậy ta c/m \(P^2\le\dfrac{27}{4}\)

<=> \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\le\dfrac{27}{4}\)

không mất tính tổng wat giả sử \(a\ge b\ge c\) (2)

dễ thấy \(\left(b-c\right)^2\le b^2;\left(c-a\right)^2\le a^2\)

=> c/m :\(a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\Leftrightarrow4a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\)

áp dụng AM-GM ta có

\(4a^2b^2\left(a-b\right)^2=\left(2ab\right)\left(2ab\right)\left(a^2-2ab+b^2\right)\le\left[\dfrac{2\left(2ab\right)+\left(a^2-2ab+b^2\right)}{3}\right]^3=\left(\dfrac{a^2+2ab+b^2}{3}\right)^3=\dfrac{\left(a+b\right)^6}{27}\)

mặt khác từ (2) ta có \(a+b\le a+b+c=3\)

=>dpcm

@quay trở lại bài toán áp dụng câu phụ mik vừa ns c2 <=> c/m

\(\left(a^3+b^3+c^3\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{243}{4}\)

nhân 3 cho 2 vế r áp dụng AM-GM

\(\left(a^3+b^3+c^3\right)3\left(a+b\right)\left(a+c\right)\left(c+b\right)\)\(\le\dfrac{\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{4}=\dfrac{\left(a+b+c\right)^6}{4}=\dfrac{729}{4}\)

=> dpcm

Bình luận (4)
michelle holder
7 tháng 5 2017 lúc 22:24

giúp jum t @Neet;@Ace Legona (có cách khác AM-GM thì qá tốt nha!!)

Bình luận (3)
michelle holder
8 tháng 5 2017 lúc 23:57

áp dụng BĐT \(\sqrt[3]{\dfrac{a^3+b^3+c^3}{3}}\ge\dfrac{a+b+c}{3}\)\(\sqrt[3]{\dfrac{a^3+b^3}{2}}\ge\dfrac{a+b}{2}\) (c/m dưới dạng tổng quát)

\(\sqrt[3]{a^2+3}=\sqrt[3]{4}.\sqrt[3]{\dfrac{\dfrac{a^2+1}{2}+1}{2}}\ge\sqrt[3]{4}.\dfrac{\sqrt[3]{\dfrac{a^2+1}{2}}+1}{2}\)

\(\sqrt[3]{b^2+3}=\sqrt[3]{7}.\sqrt[3]{\dfrac{5.\dfrac{b^2+1}{5}+1+1}{7}}\ge\sqrt[3]{7}.\dfrac{5\sqrt[3]{\dfrac{b^2+1}{5}}+1+1}{ }\)

\(\sqrt[3]{c^2+3}=\sqrt[3]{12}.\sqrt[3]{\dfrac{5.\dfrac{c^2+1}{10}+1}{6}}\ge\sqrt[3]{12}.\dfrac{5\sqrt[3]{\dfrac{c^2+1}{10}}+1}{6}\)

đặt P = VT của dpcm,ta đc

\(P\ge\dfrac{1}{\sqrt[3]{2}}\left(\sqrt[3]{\dfrac{a^2+1}{2}}+1\right)+\dfrac{1}{5\sqrt[3]{2}}\left(5\sqrt[3]{\dfrac{b^2+1}{5}}+2\right)+\dfrac{1}{5\sqrt[3]{2}}\left(\sqrt[3]{\dfrac{c^2+1}{10}}+1\right)=\left(\sqrt[3]{\dfrac{a^2+1}{4}+\sqrt[3]{\dfrac{b^2+1}{10}}+\sqrt[3]{\dfrac{c^2+1}{20}}}\right)+\dfrac{8}{5\sqrt[3]{2}}\)

AM-GM bộ 3 số ta được

\(\sqrt[3]{\dfrac{a^2+1}{4}}+\sqrt[3]{\dfrac{b^2+1}{10}}+\sqrt[3]{\dfrac{c^2+1}{20}}\ge3\sqrt[9]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{800}}\)

we c/m \(3\sqrt[9]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{800}}+\dfrac{8}{5\sqrt[3]{2}}\ge\dfrac{23}{5\sqrt[3]{2}}\)

<=>\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge100\)

cắn bút bín đổi ta đc \(\left(a^2+1\right)\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]\ge100\)

áp dụng BĐT cauchy- gì gì đó

\(\left(a^2+1\right)\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]\ge\left[a\left(b+c\right)+\left(bc-1\right)\right]^2=\left(ab+bc+ca-1\right)^2\ge10^2=100\)=> dpcm

dấu = xảy ra <=> a=1,b=2,c=3

p/s:có j sai ns t nha cách làm của t khá rườm rà @@

Bình luận (4)
Phạm Mỹ Châu
Xem chi tiết
Kiệt Nguyễn
24 tháng 5 2020 lúc 15:27

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(3\left(a^2+b^2+c^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2\le3.3=9\)hay \(a+b+c\le3\)(do \(a^2+b^2+c^2=3\))

Theo bất đẳng thức Mincopxki và bất đẳng thức Bunyakovsky dạng phân thức, ta được:

\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)

\(\ge\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(\ge\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\)

Đến đây, ta cần chứng minh rằng: \(\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\ge\frac{3\sqrt{13}}{2}\)(*)

Đặt \(t=a+b+c\Rightarrow0< t\le3\)

Khi đó, (*) trở thành \(\sqrt{9\left(\frac{9}{2t}\right)^2+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow9\left(\frac{9}{2t}\right)^2+t^2\ge\frac{117}{4}\)

\(\Leftrightarrow\frac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)(đúng với mọi \(0< t\le3\))

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Gallavich
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Qúy Công Tử
Xem chi tiết
Nguyễn Tấn An
15 tháng 8 2018 lúc 22:27

\(A=\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)=\dfrac{7\sqrt{a}}{a-9}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\dfrac{7\sqrt{a}}{a-9}-\dfrac{a+3\sqrt{a}-a+3\sqrt{a}+\sqrt{a}-3}{a-9}=\dfrac{3}{a-9}\)\(B=\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)=\dfrac{\sqrt{a}-\sqrt{a}+3}{\sqrt{a}\left(\sqrt{a}-3\right)}:\dfrac{a-9-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{3}{\sqrt{a}\left(\sqrt{a}-3\right)}.\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}{-5}=\dfrac{3\sqrt{a}-6}{-5\sqrt{a}}\)

Bình luận (2)
Nguyễn Tấn An
16 tháng 8 2018 lúc 7:21

\(C=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\left(\sqrt{a}-1\right)}\right).\dfrac{1-2a}{a}=\dfrac{a\sqrt{a}-a}{\sqrt{a}-1}.\dfrac{1-2a}{a}=\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}.\dfrac{1-2a}{a}=1-2a\)\(D=\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a\sqrt{a}+1-\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1}=\dfrac{a\sqrt{a}+1-a\sqrt{a}+a+\sqrt{a}-1}{a-1}=\dfrac{a+\sqrt{a}}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-1}\)

Bình luận (0)
Nguyễn Tấn An
16 tháng 8 2018 lúc 7:24

\(E=\dfrac{a}{a-4}+\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}=\dfrac{a+\sqrt{a}+2+\sqrt{a}-2}{a-4}=\dfrac{a+2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-2}\)

Bình luận (0)