giải BPT :
\(\dfrac{2x-1}{3}-\dfrac{x+3}{2}\le1\)
giải các bpt sau
a,\(\dfrac{x^2+2x-13}{x-1}< 1\)
b,\(\dfrac{3x^2+x-4}{x-1}< 3\)
c,\(\dfrac{2x^2-3x+1}{x+2}>0\)
d,\(\dfrac{x^2-x-6}{x^2-1}\le1\)
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
Giải hệ bpt
1) \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
2) \(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
3) \(-1< \dfrac{10x^2-3x-2}{-x^2+3x-2}< 1\)
1.
\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)
2.
\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)
Giải các BPT sau
a) \(\dfrac{3-2x}{5}\)-\(\dfrac{4x+1}{3}\)<\(\dfrac{-2+x}{2}\)-\(\dfrac{1}{4}\)
b) (x+2)2-(5+x)2 < hoặc = -2(4x+5)
giải các BPT sau
a) \(\left|\dfrac{x^2-5x+4}{x^2-4}\right|\le1\)
b) \(\left|x^2-3x+2\right|+x^2>2x\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
giải BPT \(\dfrac{2x-1}{3}+\dfrac{x-1}{2}\le3\)
\(\dfrac{2x-1}{3}\)+\(\dfrac{x-1}{2}\)\(\le3\)
<=> \(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x-1\right)}{6}\)\(\le\dfrac{18}{6}\)
<=> 4x -2+3x-3\(\le\)18
<=>7x-5\(\le\)18
<=>7x\(\le\)23
<=>x\(\le\)\(\dfrac{23}{7}\)
Vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{23}{7}\)
\(\dfrac{2x-1}{3}\)+ \(\dfrac{x-1}{2}\)\(\le\) 3
\(\Leftrightarrow\) \(\dfrac{2.\left(2x-1\right)+3.\left(x-1\right)}{6}\)\(\le\) \(\dfrac{18}{6}\)
\(\Leftrightarrow\) 2.(2x-1)+ 3.( x-1)\(\le\) 18
\(\Leftrightarrow\) 4x- 2+ 3x- 3\(\le\) 18
\(\Leftrightarrow\) 4x+ 3x\(\le\) 18+ 2+ 3
\(\Leftrightarrow\) 7x\(\le\) 23
\(\Leftrightarrow\) x\(\le\) \(\dfrac{23}{7}\)
vậy bpt có no là x\(\le\) \(\dfrac{23}{7}\)
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
Giai các bpt sau
a,\(\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\)
b,\(\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\)
a: \(\Leftrightarrow15\left(x-1\right)-2\left(7x+3\right)\le10\left(2x+1\right)+6\left(3-2x\right)\)
\(\Leftrightarrow15x-15-14x-6\le20x+10+18-12x\)
=>x-21<=8x+28
=>-7x<=49
hay x>=-7
b: \(\Leftrightarrow20\left(2x+1\right)-15\left(2x^2+3\right)< 10x\left(5-3x\right)-12\left(4x+1\right)\)
\(\Leftrightarrow40x+20-30x^2-45< 50x-30x^2-48x-12\)
=>40x-25<2x-12
=>38x<13
hay x<13/38
\(a,\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\\ \Leftrightarrow\dfrac{15\left(x-1\right)}{30}-\dfrac{2\left(7x+3\right)}{30}\le\dfrac{10\left(2x+1\right)}{30}+\dfrac{6\left(3-2x\right)}{30}\\ \Leftrightarrow15x-15-14x-6\le20x+10+18-12x\\ \Leftrightarrow x-21\le8x+28\\ \Leftrightarrow7x+49\ge0\\ \Leftrightarrow x\ge-7\)
\(b,\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\\ \Leftrightarrow\dfrac{20\left(2x+1\right)}{-60}-\dfrac{15\left(2x^2+3\right)}{-60}>\dfrac{10x\left(5-3x\right)}{-60}-\dfrac{12\left(4x+1\right)}{-60}\\ \Leftrightarrow40x+20-30x^2-45>50x-30x^2-48x-12\\ \Leftrightarrow38x-13>0\\ \Leftrightarrow x>\dfrac{13}{38}\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37