Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi nga
Xem chi tiết
như ý phạm
17 tháng 3 2015 lúc 15:02
thì bạn chuyển thanh (x+y)/xy=3/2 2 pt duoi cũng thế 

sau đó lại suy ra 1/x+1/y = 3/2

2 pt duoi cũng thế

 sau đó bạn cộng vế vs vế của 3 pt vàota se dcHPT:1/x+1/y = 3/21/y+1/z=5/61/x+1/y+1/z=11/3sau do pn lan luot thế pt 1,2 the vao pt 3=>x=17/6;y=7/3;z=13/6
nguyen thi nga
16 tháng 3 2015 lúc 21:21

có ai giúp mình với

 

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
AE Hợp Lực
30 tháng 10 2018 lúc 19:04

Thông báo thay trang thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11

Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :

Copy cái này hoặc gõ :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

zo

Nguyễn Hoàng Minh
Xem chi tiết
missing you =
16 tháng 2 2022 lúc 21:06

\(hpt\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)\(\Rightarrow x=y=z=0\) \(là\) \(nghiệm\)

\(x=y=z\ne0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)}{2xy}=\dfrac{3xy}{2xy}\\\dfrac{6\left(y+z\right)}{6yz}=\dfrac{5yz}{6yz}\\\dfrac{3\left(x+z\right)}{3zx}=\dfrac{4xz}{3zx}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{4}{3}\end{matrix}\right.\)\(ddặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{5}{6}\\a+c=\dfrac{4}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1=\dfrac{1}{x}\Leftrightarrow x=1\left(tm\right)\\b=\dfrac{1}{2}=\dfrac{1}{y}\Leftrightarrow y=2\left(tm\right)\\c=\dfrac{1}{3}\Leftrightarrow z=3\left(tm\right)\end{matrix}\right.\)

 

Nguyễn Minh Anh
16 tháng 2 2022 lúc 21:03

TK

Hệ có nghiệm là x = y = z = 0

Với xyz ≠ 0 thì (I) được viết lại

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{5}{6}\\\dfrac{z+x}{zx}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left(II\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{4}{3}\end{matrix}\right.\)

Cộng 3 phương trình của hệ (II) theo vế ta được

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{11}{3}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{11}{6}\)

Trừ phương trình trên cho từng phương trình của hệ (II) theo vế ta lần lượt có \(x=1,y=2,z=3\)

Vậy hệ phương trình có hai nghiệm \(\left(0;0;0\right)\&\left(1;2;3\right)\)

Đặng Minh Triều
Xem chi tiết
Anh Minh Cù
Xem chi tiết
Ngô Ngọc Quỳnh Mai
30 tháng 11 2016 lúc 23:36

TH1: x=0

TH2: x khác 0 thì y,z khác 0

VT là bậc hai theo 2 biến, VP là bậc nhất theo các biến tương ứng. Do đó chia pt cho 2 biến tương ứng theo VT. cụ thể pt đầu chia cho xy, pt 2 chia cho yz, pt 3 chia cho zx

ta quy về đươc pt 3 ẩn giải được

còn lại em tự giải nhé

Hoàng Ngọc Tuyết Nung
Xem chi tiết
Minh Triều
Xem chi tiết
Thắng Nguyễn
16 tháng 5 2016 lúc 6:09

ê cu bài phần a nè

(2)<=>X2(1-X3)+y2(1-y3)=0 (3) 

từ (1) => 1-x3=y3;1-y3=x3

thay vào (3)ta được :x2.y3+y2.x3=0 

<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)

phan gia huy
Xem chi tiết
pro
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 8 2021 lúc 16:40

\(2=3\sqrt{xy}+2\sqrt{xz}\le\dfrac{3}{2}\left(x+y\right)+x+z\)

\(\Rightarrow5x+3y+2z\ge4\)

\(A=5\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+3\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+2\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)

\(A\ge5.2x+3.2y+2.2z=2\left(5x+3y+2z\right)\ge8\)

\(A_{min}=8\) khi \(x=y=z=\dfrac{2}{5}\)