tìm x, y biet \(\dfrac{x}{y+2018}+\dfrac{y}{x+2017}+\dfrac{x+y}{4035}=2\)
Tìm nghiệm nguyên dương của phương trình
\(\dfrac{2018}{x+y}+\dfrac{x}{y+2017}+\dfrac{y}{4035}+\dfrac{2017}{x+2018}=2\)
Tim x, y, z biet
\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\) va x+y+z=48
Ta có:
\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\)
\(=\dfrac{12x-15y+20z-12x+15y-20z}{2017+2018+2019}\)
\(=\dfrac{0}{2017+2018+2019}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x-15y=0\\20z-12x=0\\15y-20z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)\(\Rightarrow12x=15y=20z\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tích chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.5=20\\y=4.4=16\\z=4.3=12\end{matrix}\right.\)
Vậy ...
Tìm x, y, z
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)
\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)
So sánh x và y trong các TH sau: \(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}};y=\sqrt{2017}+\sqrt{2018}\)
Áp dụng BĐT Cauchy–Schwarz ta được:
\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)
Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)
Vậy đẳng thức ko xảy ra hay \(x>y\)
tìm x
\(\dfrac{_{ }x-1}{_{ }2018}\) = \(\dfrac{_{ }3-y}{2019}\) và \(_{ }x\) - 4035 = \(_{_{ }}y\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2018}=\dfrac{3-y}{2019}=\dfrac{x-1+3-y}{2018+2019}=1\)
=>x-1=2018 và 3-y=2019
=>x=2019; y=-2016
cho 3 số x,y,z thỏa \(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}\)
CM: 4(x-y)(y-z)=(z-x)^2
\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)
\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)
Tìm GTNN
a) \(y=\sqrt{x^3+2\left(1+\sqrt{x^3+1}\right)}+\sqrt{x^3+2\left(1-\sqrt{x^3+1}\right)}\)
b) \(f\left(x\right)=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
c) \(y=\dfrac{x-2017}{\sqrt{x-2018}}\)
a. ĐKXĐ: \(x\ge-1\)
\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)
\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)
\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)
b.
\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)
c.
\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
tìm nghiệm nguyên của pt
\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{4035}+\frac{2017}{x+2018}=2\)
Chứng minh Nesbit 4 số rồi áp dụng nhé
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+d\right)}+\frac{c^2}{c\left(d+a\right)}+\frac{d^2}{d\left(a+b\right)}\) (*)
Theo Cauchy - Schwarz dạng engel , ta có
(*) \(\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
\(=\frac{2\left(a+c\right)\left(b+d\right)+\left(a+c\right)^2+\left(b+d\right)^2}{\left(a+c\right)\left(b+d\right)+2ac+2bd}\ge\frac{2\left(a+c\right)\left(b+d\right)+4ac+4bd}{\left(a+c\right)\left(b+d\right)+2ac+2bd}=2\)
Đẳng thức xảy ra <=> a = c và b = d
Áp dụng bất đẳng thức Nesbit cho 4 số ,ta có
\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{2017+2018}+\frac{2017}{x+2018}\ge2\)
Đẳng thức xảy ra <=> y = 2018 , x = 2017