xác định đa thức M biết: \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)
Tìm đa thức M biết:
a, M + (5x bình phương - 2xy) = 6x bình phương + 9xy - y bình phương
b, M - ( 6x bình phương - 4xy) = 7x bình phương - 8xy + y bình phương
1. Rút gọn các biểu thức:
a) \(10^{n+1}-6.10^n;\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n;\)
c) \(90.10^k-10^{k+2}+10^{k+1};\)
d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
2. Xác định đa thức M biết rằng: \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)
Mọi người giúp mình với ạ, mai mình học rồi. Cảm ơn mọi người nhiều lắm ạ!
1a) \(10^{n+1}-6\cdot10^n\)
\(=10^n\cdot10-6\cdot10^n\)
= \(10^n\left(10-6\right)\)
\(=10^n\cdot4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n\cdot2^3+2^n\cdot2^2-2^n\cdot2+2^n\)
\(=2^n\left(2^3+2^2-2+1\right)\)
\(=2^n\cdot11\)
c) \(90\cdot10^k-10^{k+2}+10^{k+1}\)
\(=90\cdot10^k-10^k\cdot10^2+10^k\cdot10\)
\(=10^k\left(90-10^2+10\right)=0\)
d) \(2,5\cdot5^{n-3}\cdot10+5^n-6\cdot5^{n-1}\)
\(=\dfrac{2,5\cdot10\cdot5^n}{5^3}+5^n-\dfrac{6\cdot5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6\cdot5^n}{5}\)
\(=\dfrac{5^n+5^n\cdot5-6\cdot5^n}{5}=\dfrac{5^n\left(5-6\right)+5^n}{5}=0\)
2. \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)
\(M=\left(7x^2-8xy+y^2\right)-\left(6x^2-4xy\right)\)
\(M=7x^2-8xy+y^2-6x^2+4xy\)
\(M=7x^2-6x^2-8xy+4xy+y^2\)
\(M=x^2-4xy+y^2\)
1a) 10n + 1 - 6.10n = 10n.10 - 6.10n = 10n.(10 - 6) = 10n.4
b) 2n + 3 + 2n + 2 - 2n + 1 + 2n = 2n.8 + 2n.4 - 2n.2 + 2n = 2n.(8 + 4 - 2 + 1) = 2n.11
c) 90.10k - 10k + 2 + 10k + 1 = 90.10k - 10k.100 + 10k.10 = (90 - 100 + 10).10k = 20.10k
d) 2,5.5n - 3.10 + 5n - 6.5n - 1 = 2,5.5n : 125.10 + 5n - 6.5n: 5 = 0,2.5n + 5n - 1,2.5n = (0,2 + 1 - 1,2).5n = 0
1. Tìm nghiệm của các đa thức sau :
a) \(m\left(x\right)=x^2+7x-8\)
b) \(g\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
c) \(n\left(x\right)=5x^2+9x+4\)
2. Cho đa thức \(P\left(x\right)=mx-3\). Xác định m biết \(P\left(-1\right)=2\)
3. Cho đa thức \(Q\left(x\right)=-2x^2+mx-7m+3\). Xác định m biết Q(x) có nghiệm là -1.
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Xác định giá trị a,b sao cho đa thức \(Q\left(x\right)=6x^4-7x^3+ax+3x+2\) chia hết cho đa thức \(M\left(x\right)=x^2-x+b\).
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5,f\left(x\right)-g\left(x\right)=4x^{^{ }4}-6x^3+7x^2+8x-9\)hãy tìm các đa thức f(x), g(x)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\\ \Rightarrow2f\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\\ 2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\\ 2f\left(x\right)=2\left(5x^4-3x^3+2x^2+4x-7\right)\\ \Rightarrow f\left(x\right)=5x^4-3x^3+2x^2+8x-14\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ \Rightarrow g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\\ g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-8x+14\\ g\left(x\right)=x^4+3x^3-5x^2-8x+9\)
Xac dinh da thuc M biet rang :
a) M+(6x\(^2\)- 4xy)=7x\(^2\)- 8xy+y\(^2\)
b) M- (6x\(^2\) - 4xy)=7x\(^2\) - 8xy+y\(^2\)
GIUP MINH NHA CAC BAN K LA MINH CHET VOI CO GIAO MINH MAT THUI
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
Cho đa thức \(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho \(2x-5\). Tìm \(m\) và số dư phép chia \(f\left(x\right)\) cho \(3x-2\).
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
Do chia hết , theo định lý Bezout:
Khi đó
Số dư phép chia cho :
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)⋮2x-5\) , theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6\left(\dfrac{5}{2}\right)^3-7\left(\dfrac{5}{2}\right)^2-16\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2:\)
\(f\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^3-7\left(\dfrac{2}{3}\right)^2-16\left(\dfrac{2}{3}\right)-10=-22\)
B2 :
a) Làm tính nhân : \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^3\right)\)
b)Phân tích đa thức thành nhân tử :
\(8x^3+4x^2y-2xy^2-y^3\)
\(7x^3-3x^2y-3xy^2-y^3\)
c) CMR : biểu thức sau không phụ thuộc vào x :
\(x\left(x+3\right)^2-\left(x-2\right)^3-3x\left(4x-1\right)\)
d) tìm a để đa thức : \(\left(24x^3+34x^2-13x+a\right)⋮\left(6x+1\right)\)
Bài 2 :
a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)
\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)
\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)